No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Lustig Yashu? 6 years, 10 months ago

Less than me f ko...upr se plus krte jana..or more than me nichese
  • 1 answers

Swats Soni 6 years, 10 months ago

6×side square
  • 0 answers
  • 1 answers

Abhi Singh 6 years, 10 months ago

1 is hcf
  • 1 answers

Swats Soni 6 years, 10 months ago

By cf
  • 2 answers

Eliza ? 6 years, 10 months ago

koi nhi h mode because mode highest repeated frequency hoti h or ye charo hi ek ek bar hn .

Thanks Ki Baarish ........???? 6 years, 10 months ago

Failure & success are the two sides of the same coin. So don’t get nervous. I know you can do well in the exam. Failing in a exam is not so serious issue in life. If you have failed today then try the best for tomorrow. I know tomorrow will show us your talent. Be confident! Good luck! Exam is waiting for giving you a chance of testing your knowledge. Just believe in yourself! Best of luck! Exams can prove you how brilliant and intelligent you are than the others. So, you should grab the opportunity. Best wishes for you!
  • 3 answers

Vikram Singh 6 years, 10 months ago

20000 and 10000

Swetanshu Kumar 6 years, 10 months ago

apply the S.P. formula ( percentage one) and take original price as x and y S.P. = 100+ gain%/100 × C.P.

Thanks Ki Baarish ........???? 6 years, 10 months ago

Profit &loss in class 10 By the way.. .All the b3s5 for ur exams??????????
  • 2 answers

Abhishek Bishnoi 6 years, 10 months ago

And s = d/t so 360/ x and 360/ x+5 now solve this yoy get answer

Abhishek Bishnoi 6 years, 10 months ago

Let the uniform speed be x
  • 1 answers

Abhi Singh 6 years, 10 months ago

Go to google
  • 1 answers

Sia ? 6 years, 4 months ago

LHS{tex} = \left( {\frac{1}{{{{\sec }^2}\theta - {{\cos }^2}\theta }} + \frac{1}{{\cos e{c^2}\theta - {{\sin }^2}\theta }}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{1}{{\frac{1}{{{{\cos }^2}\theta }} - {{\cos }^2}\theta }} + \frac{1}{{\frac{1}{{{{\sin }^2}\theta }} - {{\sin }^2}\theta }}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{1}{{\frac{{1 - {{\cos }^4}\theta }}{{{{\cos }^2}\theta }}}} + \frac{1}{{\frac{{1 - {{\sin }^4}\theta }}{{{{\sin }^2}\theta }}}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{{{{\cos }^2}\theta }}{{1 - {{\cos }^4}\theta }} + \frac{{{{\sin }^2}\theta }}{{1 - {{\sin }^4}\theta }}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{{{{\cos }^2}\theta \left( {1 - {{\sin }^4}\theta } \right) + {{\sin }^2}\theta \left( {1 - {{\cos }^4}\theta } \right)}}{{\left( {1 - {{\cos }^4}\theta } \right)\left( {1 - {{\sin }^4}\theta } \right)}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex}=\left( {\frac{{{{\cos }^2}\theta \left( {1 - {{\sin }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right) + {{\sin }^2}\theta \left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right)}}{{\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right)\left( {1 - {{\sin }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{{{{\cos }^2}\theta \cdot {{\cos }^2}\theta \left( {1 + {{\sin }^2}\theta } \right) + {{\sin }^2}\theta {{\sin }^2}\theta \left( {1 + {{\cos }^2}\theta } \right)}}{{{{\sin }^2}\theta \left( {1 + {{\cos }^2}\theta } \right){{\cos }^2}\theta \left( {1 + {{\sin }^2}\theta } \right)}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex} {tex}\left[ {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right]{/tex}
{tex} = \left( {\frac{{{{\cos }^4}\theta \left( {1 + {{\sin }^2}\theta } \right) + {{\sin }^4}\theta \left( {1 + {{\cos }^2}\theta } \right)}}{{{{\sin }^2}\theta {{\cos }^2}\theta \left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{{{{\cos }^4}\theta \left( {1 + {{\sin }^2}\theta } \right) + {{\sin }^4}\theta \left( {1 + {{\cos }^2}\theta } \right)}}{{\left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){/tex}
{tex} = \left( {\frac{{{{\cos }^4}\theta + {{\cos }^4}\theta {{\sin }^2}\theta + {{\sin }^4}\theta + {{\sin }^4}\theta {{\cos }^2}\theta }}{{\left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){/tex}
{tex} = \left( {\frac{{{{\cos }^4}\theta + {{\sin }^4}\theta + {{\cos }^4}\theta {{\sin }^2}\theta + {{\sin }^4}\theta {{\cos }^2}\theta }}{{\left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){/tex}
{tex} = \frac{{{{\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}^2} - 2{{\cos }^2}\theta {{\sin }^2}\theta + {{\cos }^2}\theta {{\sin }^2}\theta \left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}}{{\left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}{/tex}
{tex} = \frac{{1 - 2{{\cos }^2}\theta {{\sin }^2}\theta + {{\cos }^2}\theta {{\sin }^2}\theta \times 1}}{{1 + {{\sin }^2}\theta + {{\cos }^2}\theta + {{\cos }^2}\theta {{\sin }^2}\theta }}{/tex} {tex}\left[ {{{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right]{/tex}
{tex} = \frac{{1 - {{\cos }^2}\theta {{\sin }^2}\theta }}{{1 + 1 + {{\cos }^2}\theta {{\sin }^2}\theta }}{/tex}
{tex} = \frac{{1 - {{\cos }^2}\theta {{\sin }^2}\theta }}{{2 + {{\cos }^2}\theta {{\sin }^2}\theta }}{/tex}
= RHS
Hence proved

  • 2 answers

Abhi Singh 6 years, 10 months ago

Yes for figures there is marks but in necessary question

Prasanna Punwatkar 6 years, 10 months ago

yes because the diagram has the value which are drawn from pencil o ly
  • 1 answers

Thanks Ki Baarish ........???? 6 years, 10 months ago

Yes....but it should be transparent Suman ......All the best for ur exams ??
  • 0 answers
  • 3 answers

Shiv Mishra 6 years, 10 months ago

120

Abhi Singh 6 years, 10 months ago

Mode is 120

Vikram Singh 6 years, 10 months ago

120 paji
  • 2 answers

Vikram Singh 6 years, 10 months ago

If cbseguide would allow pictures then surely i can answer you bt...still the feature isnt introduced yet. ...call your school buddies for help

Manish Kumar 6 years, 10 months ago

Answer me...
  • 1 answers

Vikram Singh 6 years, 10 months ago

Galat question h Proof mei √2Costheta hoga
  • 1 answers

Abhi Singh 6 years, 10 months ago

Rd sharma me solutuon diya h
  • 1 answers

Vikram Singh 6 years, 10 months ago

Refer Ncert
  • 1 answers

_T_A_N_U_78 ??? 6 years, 10 months ago

...?????
  • 1 answers

Sia ? 6 years, 4 months ago

Given: PQ is a diameter of a circle with centre O. The lines AB and CD are the tangents at P and Q respectively.
 
To prove: AB {tex}\parallel{/tex} CD
Proof: AB is a tangent to the circle at P and Op is the radius through the point of contact
{tex}\because{/tex} {tex}\angle{/tex}OPA = 90o .......(1) [The tangent at any point of a circle is perpendicular to the radius through the point of contact]
{tex}\because{/tex} CD is a tangent to the circle at Q and OQ is the radius through the point of contact.
{tex}\therefore{/tex} {tex}\angle{/tex}OQD = 90o ........(2) [The tangent at any point of a circle is perpendicular to the radius through the point of contact]
From (1) and (2),
{tex}\angle{/tex}OPA  = {tex}\angle{/tex}OQD
But these form a pair of equal alternate angles.
{tex}\because{/tex} AB {tex}\parallel{/tex} CD

  • 3 answers

Navjot Singh 6 years, 10 months ago

Let us assume that √5 is rational, then it will be =a/b a and be are coprime numbers. √5=a/b Squaring both sides 5=a²/b² 5b²=a² It means 5 will divide a² and also a. 5 will divide a for some integer c 5c=a (squaring both sides) 25c² = a² So 25c²=5b² 5c²=b² It contradicts that a and b are coprime, our assumption was wrong and √5 is irrational

Harshit Hada 6 years, 10 months ago

How i can solve it

Vishwaraj Singh 6 years, 10 months ago

Yes bro
  • 1 answers

_T_A_N_U_78 ??? 6 years, 10 months ago

Let that be equal to p/q where p q r integers ..... Sqaure on b.s And after that u know it
  • 1 answers

Aisha Jain 6 years, 10 months ago

Thanq..n same to u
  • 3 answers

Mehak Rathore 6 years, 10 months ago

Result will tell how much life seems good ???????

Abhi Singh 6 years, 10 months ago

true

Vikram Singh 6 years, 10 months ago

Life seems good until the paper leaks ???
  • 1 answers

Bhavya Choubey 6 years, 10 months ago

-1 is the ans
  • 2 answers

Vikram Singh 6 years, 10 months ago

Thanks!

_T_A_N_U_78 ??? 6 years, 10 months ago

Yes 1. find the centre and do as it is instructed by ur teacher ....and i think its out of syllabus

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App