No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Divyanshi Srivastava 5 years, 6 months ago

Zero

Shashwat Shukla 5 years, 6 months ago

Nd
  • 1 answers

Ruby Soni 5 years, 6 months ago

The two given lines a)are coinciding b)are parallel or c)are intersecting lines
  • 2 answers

Abhay Singh 5 years, 6 months ago

Dear see this ques in maths book ......

Prince Rashgotra 5 years, 6 months ago

5262726+889
  • 2 answers

Ruby Soni 5 years, 6 months ago

2×2×2×2...jab tak 2056 na aa jaye

Abhay Singh 5 years, 6 months ago

Dear , Kbhi book utha ke dekh liya kro.....
  • 2 answers

Sandarbh Singh 5 years, 6 months ago

X=2 y=1

Yogita Ingle 5 years, 6 months ago

 Given equations are

2x+y-5=0

3x+2y-8=0

 By cross multiplication rule,

{tex}\displaystyle\frac{x}{-8+10}=\frac{y}{-15+16}=\frac{1}{4-3}{/tex}

{tex}\displaystyle\implies\frac{x}{2}=\frac{y}{1}=\frac{1}{1}{/tex}

{tex}\implies\;x=2\;\text{and}\;y=1{/tex}

{tex}\therefore\textbf{The solution is x=2 and y=1 }{/tex}

 

 

  • 1 answers

Helper . 5 years, 6 months ago

Let fixed charge be x And charge per km be y X+10y=105---1eq. X+15y=155----2eq. Use substitute method here X=105-10y---3eq. Put X value in 2nd equation 105-10y+15y=155 105+5y=155 5y=155-105 Y=50/5 Y=10 Hence the value of y is 10,put this value of y in 1st equation. X+10*10=105 X+100=105 X=105-100 X=5 The value of X =5 and y=10
  • 1 answers

Sirjan Jeet Singh 5 years, 6 months ago

Other number = LCM ×HCF / 1st number Other number = 1449 ×23 / 161 Other number = 207
  • 5 answers

Lakshita Garg Garg 5 years, 6 months ago

103

Angel Anjali 5 years, 6 months ago

103 50+2+50+1=50+50+2+1=100+3=103?

Bhavik Gupta 5 years, 6 months ago

103

Varshini Rm 5 years, 6 months ago

103

Anushka ???? 5 years, 6 months ago

103
  • 1 answers

Angel Anjali 5 years, 6 months ago

Let us assume that √3 is a rational number. Then, as we know a rational number should be in the form of p/q where p and q are co- prime number. So, √3 = p/q { where p and q are co- prime} √3q = p Now, by squaring both the side we get, (√3q)² = p² 3q² = p² ........ ( i ) So, if 3 is the factor of p² then, 3 is also a factor of p ..... ( ii ) => Let p = 3m { where m is any integer } squaring both sides p² = (3m)² p² = 9m² putting the value of p² in equation ( i ) 3q² = p² 3q² = 9m² q² = 3m² So, if 3 is factor of q² q is divisible by 3 From this we can say p and q have a common factor 3 It contradicts our assumption p and q are co primes Therefore root 3 is an irrational number
  • 1 answers

Varshini Rm 5 years, 6 months ago

Quotient-quadratic polynomial Remainder-linear polynomial
  • 1 answers

Yogita Ingle 5 years, 6 months ago

Given: x2 + 32x – 273 = 0
We can rewrite the given equation as 
⇒ x2 + 39x - 7x – 273 = 0
⇒ x( x + 39) 7 7(x +39) = 0
⇒ ( x +39)(x - 7) = 0
∴ Factors of the given quadratic equation are  ( x + 39) and (x - 7)

  • 1 answers

Yogita Ingle 5 years, 6 months ago

X + y = 5 ( equation 1 )
2x - 3y = 4 ( equation 2 )
Now,
multiplying (eq.1) by 2 and subtracting (eq.2) from ( eq.1 )
(2x + 2y = 10) - (2x - 3y = 4 )
=> 2x + 2y - 2x + 3y = 6
=> 5y = 6
=> y = 6/5
Putting the value of y in ( eq.1 )
=> x+ y = 5
=> x + 6/5 = 5
=> x = 5 - 6/5
=> x = 19/5

  • 1 answers

Yogita Ingle 5 years, 6 months ago

X + y = 5 ( equation 1 )
2x - 3y = 4 ( equation 2 )
Now,
multiplying (eq.1) by 2 and subtracting (eq.2) from ( eq.1 )
(2x + 2y = 10) - (2x - 3y = 4 )
=> 2x + 2y - 2x + 3y = 6
=> 5y = 6
=> y = 6/5
Putting the value of y in ( eq.1 )
=> x+ y = 5
=> x + 6/5 = 5
=> x = 5 - 6/5
=> x = 19/5

  • 0 answers
  • 1 answers

Yogita Ingle 5 years, 6 months ago

Net sown area is the area sown with crops but it is counted once.

GCA and NSA helps in calculating cropping intensity..

  • 2 answers

Yogita Ingle 5 years, 6 months ago

formula is a=bq+r

a=38220,b=195

38220=196*195+0

Therefore remainder =0

Hence,

Hcf of 196 and 38220 is 195

Jashan Bansal 5 years, 6 months ago

195
  • 1 answers
Let a be any integer divisible by 6.... So, a = 6q, 6q+1, 6q+2, 6q+3, 6q+4,6q+5, ...(0<= r <6) We know that multiple of 6 are even and addition of even with even is also even... Therefore, 6q, 6q+2, 6q+4 are even.......hence, 6q+1,6q+3,6q+5 are odd_______________________________HOPE THIS WILL HELP U TO UNDERSTAND???
  • 1 answers

Maskoor Alam Alam 5 years, 6 months ago

3x²+25x-18 3x²+27x-2x-18 3x(x+9) -2(x+9) (x+9) (3x-2)
  • 1 answers

Sunita Garg 5 years, 6 months ago

Given 

2x2+5x+3 =2x2+2x+3x+3

                   =2x(x+1) +3(x+1) 

                    =(x+1) (2x+3) 

Thus

2x2+5x+3= (x+1) (2x+3) 

 

  • 3 answers

Kyōka ( Demon Snow ) 5 years, 6 months ago

a = bq + r. Where ' a ' and ' b ' are integers and 0 ≤ r <b.

Shivang The Chemistry Lover 5 years, 6 months ago

a=bq+r where 0<_r<b

Rao Akmal 5 years, 6 months ago

a=bq+r where 0<r<b
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App