No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Aabha Bansal 5 years, 2 months ago

1/13

Dk Dev 5 years, 2 months ago

4/52=1/13
  • 4 answers

Sonam Kumari Paswan 5 years, 1 month ago

r s ex 15a q ''4

Sarthak Arya 5 years, 2 months ago

Let first side =5* second side =12* third side =13* Perimeter =150 Perimeter= a+b+c 150 =(5*)+(12*)+(13*) 150 =30* Area = 1/2*base*height =1/2*24*14.5 = 12*14.5 = 174cm sq.

Saurabh ???? 5 years, 2 months ago

Area of triangle=1/2*base*height = 1/2*24*14.5 =12*14.5 = 174 Cm square

Gaurav Bhati 5 years, 2 months ago

Let the side of tria
  • 1 answers

Yogita Ingle 5 years, 2 months ago

p = (18 + 24 + 30) ÷ 2 = 36 cm

area = √p(p-a)(p-b)(p-c)

area = √36(36 - 18)(36 - 24)(26 - 30)

area = √46656

area = 216 cm²

area = 1/2 (base) (height)

216 = 1/2 (18) (height)

216 = 9 height

height = 216 ÷ 9 = 24 cm
The area is 216 cm² and the corresponding height is 24 cm

  • 1 answers

Yogita Ingle 5 years, 2 months ago

Semiperimeter (s) = (42 + 34 + 20 ) / 2
So it is = 96 / 2 = 48 cm.

Using herons formula = (√s )(√s-a )(√s-b) (√s-c)
By  substituting s and a , b , c   i.e  the given sides.
We have √48 × √6 × √14 × √28
So √ (4 × 6 × 2) × √6 × √(7 × 2) × √(7 × 4)
Simplifying the numbers we have area = 4 × 6 × 2 × 7 = 336 cm ²
Hence area is 336 cm²
Now height corresponding to longest side implies that base is 42 cm and area remains same 
So area of triangle is  1/ 2 b × h
336 = 1/ 2 ×  42 × H
HENCE H = 16 cm
So height is 16 cm .

  • 1 answers

Yogita Ingle 5 years, 2 months ago

Let r be the radius of circle.
Difference between circumference and radius of circle = 37 cm
Circumference of circle = 2r
                                      = 2 x 22/7 x r = 44/7 x r
Now,
Difference between circumference and radius of circle = 2r - r
37 = 44/7 x r - r
37 = r(44/7-1)
37 = r(44 - 7)/7
37 = 37 / 7 x r
37 x 7/37 = r
r = 7 cm
Now , Circumference of circle = 44/7 x r
                                                 = 44/7 x 7
                                                 = 44 cm . 
∴ Circumference of circle = 44 cm

  • 0 answers
  • 2 answers

Samyuktha Kocherlakota 5 years, 2 months ago

Tan A =4/5=B/C CosA _ SinA /CosA+SinA=4_5/root 41/4+5/root41 1/9

Samyuktha Kocherlakota 5 years, 2 months ago

1/9
  • 2 answers

Samyuktha Kocherlakota 5 years, 2 months ago

SecA = 1/cos a,tanA=sina /cosa (1/cos a+sina /cosa)(1_sina) 1_sina)(1+sina)/cosa 1_sin^2 a/cosa Cos^2A/cosA Cosa

Samyuktha Kocherlakota 5 years, 2 months ago

Cos A
  • 0 answers
  • 1 answers

Dileswar Behera 5 years, 1 month ago

a.a.b.b
  • 1 answers

Saurabh ???? 5 years, 2 months ago

1458
  • 2 answers

Dileswar Behera 5 years, 2 months ago

The decimal experssion120/3*3*3*5*5*5*5*5*5*5is

Yogita Ingle 5 years, 2 months ago

Since, 96 = 2 × 2 × 2 × 2 × 2 × 3
and, 404 = 2 × 2 × 101
So, HCF of 96 and 404 = Product of common prime factors
                                  = 2 × 2 = 4
LCM = 2 × 2 × 2 × 2 × 2 × 101 × 3
        = 9696

  • 1 answers

Anshul Rathor 5 years, 2 months ago

4 sq units.
  • 4 answers
This is the formula for LCM- Product of AB /HCF of AB = LCM

Ajin Ajin 5 years, 2 months ago

Sorry LCM is 12

Ajin Ajin 5 years, 2 months ago

Least common multiple for example 6 , 12 LCM is 6

Pranali Marnur 5 years, 2 months ago

Product of AB /HCF of AB = LCM
  • 2 answers

Sarthak Pampatwar 5 years, 2 months ago

A chord means a line joining two points of the circle without joining to the centre

Kotadiya Kalpesh 5 years, 2 months ago

A chord is a secant line or just secant . In another word chord is line segment joining two pointson any curve, for instance,an ellipsis.
  • 1 answers

Rohit Kumar 5 years, 2 months ago

LHS:- (cosecA-secA)( cotA-tanA) => (1/sinA-1/cosA)(cosA/sinA-sinA/cosA) => (cosA-sinA/sinAcosA)(Cos^2A-sin^2A/sinAcosA) => (cosA-sinA)(cosA+sinA)(cosA-sinA) /(sinAcosA)^2 => (cosA-sinA)^2(cosA+sinA)/(sinAcosA)^2 => (cos^2A+sin^2A-2cosAsinA)(cosA+sinA)/(sinAcosA)^2 => (1-2cosAsinA)/(cosAsinA) (cosA+sinA)/(cosAsinA) (since cos^2A+sin^2A=1) => (1/cosAsinA-2cosAsinA/cosAsinA)(cosA/cosAsinA+sinA/cosAsinA) => (secAcosecA-2)(cosecA+secA) Hence, LHS=RHS
  • 3 answers

Harman Preet 5 years, 2 months ago

Vedantu

Rishabh Sharma 5 years, 2 months ago

You can consider YouTube channel Easy maths https://www.youtube.com/user/akashchauhancsit It will provide best study

#Abhisht Singh 5 years, 2 months ago

Cbse classes
  • 1 answers

Pooja Choudhary 5 years, 2 months ago

Let breadth of rectangular park = x m

Therefore, length of park = 2x m

Perimeter = 840 m

2×(Length+Breadth) = 840

2×(x+2x)=840

2×3x = 840

6x = 840

x=840/6

x= 140 m

Length = 2x = 2×140 = 280 m

Breadth = x = 140 m

Area = length × breadth

           = 280 × 140

          = 39200 m²

 

  • 1 answers

Pooja Choudhary 5 years, 2 months ago

Let length = x m

Breadth = 16 m

Perimeter = 80 m

2 × ( l + b ) = 80

2 × ( x + 16 ) = 80

x+16 = 80/2

x+16 = 40

x = 40-16 = 24

Length = 24 m

Area = length × breadth

         = 24×16

         = 384 m²

  • 2 answers

Aditya Kumar 5 years, 2 months ago

First find A1 Next find A4 Now, we have A=A1, L=A4 and N=4 By putting these values in formula of Sn=n/2 (a+l) we will get S4= 42

Aditya Kumar 5 years, 2 months ago

S4=42
  • 2 answers

Aditya Kumar 5 years, 2 months ago

Let numerator be n, and denominator be d a to q (n-1) /(d-1) =1/3 after solving it we will get 3n-d=2 --------------------(i) now, (n+1) /(d+1) =1/2 after solving it we will get d-2n=1 --------------------(ii) Adding both eqn, we get n=3 By putting value of n =3 in any one eqn we get, d=7 So the fraction, n/d=3/7

Aditya Kumar 5 years, 2 months ago

Fraction = 3/7
  • 1 answers

Yogita Ingle 5 years, 2 months ago

To prove - OC║SR

Proof  -  In ΔOPS and ΔOAB

∠POS = ∠AOB     (common in both)

∠OSP = ∠OBA  (corresponding angles are equal as PS║AB)

=> ΔOPS ~ ΔOAB    [AA criteria]

=>  PS/AB =  OS/OB       ........................(1)     (sides in similar triangles are proportional)

In ΔCAB and ΔCRQ

As, QR║AB

=> ∠QCR = ∠ACB        (common)

=>  ∠CBA  = ∠CRQ       (corresponding angles are equal)

=>  ΔCAB ~ ΔCQR           [AA criteria]

=>  CR/CB = QR/AB         (sides in similar triangles are proportional)

Also,  PS = QR        [ PQRS  is parallelogram]

=>  CR/CB = PS/AB                     ......................(2)

From    (1) and (2)

=>   OS/OB =  CR/CB

=>   OB/OS =  CB/CR

Subtracting 1 from both sides

So,  OB/OS - 1 =  CB/CR - 1

=>  (OB - OS)/OS  =  (CB - CR)/CR

=>  BS/OS = BR/CR

By converse of Thales Theorem

=>  OC║SR        .     Hence proved  .

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App