No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Moin Uddin 5 years, 1 month ago

0.6018
  • 0 answers
  • 1 answers

Aakanksha Nasre 5 years, 1 month ago

Given, 15cotA=8 CotA=8/15 CotA=AB/BC AB=8,BC=15 In triangle ABC, By Pythagoras theorem, AC^2=AB^2+BC^2 =(8)^2+(15)^2 =64+225 =289 AC=√289 AC=17 units SinA=BC/AC =15/17 SecA=AC/AB =17/8
  • 1 answers

Yogita Ingle 5 years, 1 month ago

We know that in a triangle, sum of the angles = 180°

A+B+C = 180 → (1)
sin 30 

cos45 
So,
sin (A+B-C) = sin 30

A+B-C = 30 → (2)

And

cos (B+C-A) = cos 45

B+C-A = 45 → (3)

On solving equation (1) and (2), we get,  

A+B+C-A-B+C = 180-30 = 150

2C = 150

C = 75°

Substituting C=75 in equation (2), we get,

A+B-75 = 30

A+B = 105 → (4)

Also, substituting in equation (3), we get,

B+75-A =45

A-B = 30 → (5)

Adding equations (4) and (5), we get,

2A = 135 → A = 67.5°

B = A-30 = 67.5 - 30 = 37.5°

Therefore, A=67.5°; B=37.5°; and C=75°

  • 2 answers

Prem Bayas 5 years, 1 month ago

The X value is 10

Prem Bayas 5 years, 1 month ago

The X value is 10
  • 1 answers

Gaurav Seth 5 years, 1 month ago

The nature of the roots depends on the value of b2 – 4ac. bx2 – 4ac is called the discriminant of the quadratic equation ax2 + bx + c = 0 and is generally, denoted by D.
∴ D = b2 – 4ac
If D > 0, i..e., b2 – 4ac > 0, i.e., b2 – 4ac is positive; the roots are real and unequal. Also,
(i) If b2 – 4ac is a perfect square, the roots are rational and unequal.
(ii) If b2 – 4ac is positive but not perfect square, the roots are irrational and unequal.
If D = 0, i.e., b2 – 4ac = 0; the roots are real and equal.
If D < 0, i.e., b2 – 4ac < 0; i.e., b2 – 4ac is negative; the roots are not real, i.e., the roots are imaginary.

  • 1 answers

Gaurav Seth 5 years ago

Nature of Roots

A quadratic equation ax2 + bx + c = 0 has

(i) two distinct real roots, if b2 – 4ac > 0,

(ii) two equal real roots, if b2 – 4ac = 0,

(iii) no real roots, if b2 – 4ac < 0.

Since b2 – 4ac determines whether the quadratic equation ax2 + bx = 0 has real roots or not, b2 – 4ac is called the discriminant of this quadratic equation

  • 3 answers

Gaurav Seth 5 years, 1 month ago

(i) (cosec θ – cot θ)= (1-cos θ)/(1+cos θ)

To prove this, first take the Left-Hand side (L.H.S) of the given equation, to prove the Right Hand Side (R.H.S)

L.H.S. = (cosec θ – cot θ)2

The above equation is in the form of (a-b)2, and expand it

Since (a-b)2 = a2 + b2 – 2ab

Here a = cosec θ and b = cot θ

= (cosec2θ + cot2θ – 2cosec θ cot θ)

Now, apply the corresponding inverse functions and equivalent ratios to simplify

= (1/sin2θ + cos2θ/sin2θ – 2cos θ/sin2θ)

= (1 + cos2θ – 2cos θ)/(1 – cos2θ)

= (1-cos θ)2/(1 – cosθ)(1+cos θ)

= (1-cos θ)/(1+cos θ) = R.H.S.

Therefore, (cosec θ – cot θ)= (1-cos θ)/(1+cos θ)

Hence proved.

(ii)  (cos A/(1+sin A)) + ((1+sin A)/cos A) = 2 sec A

Now, take the L.H.S of the given equation.

L.H.S. = (cos A/(1+sin A)) + ((1+sin A)/cos A)

            = [cos2A + (1+sin A)2]/(1+sin A)cos A

            = (cos2A + sin2A + 1 + 2sin A)/(1+sin A) cos A

Since cos2A + sin2A = 1, we can write it as

            = (1 + 1 + 2sin A)/(1+sin A) cos A

            = (2+ 2sin A)/(1+sin A)cos A

            = 2(1+sin A)/(1+sin A)cos A

            = 2/cos A = 2 sec A = R.H.S.

L.H.S. = R.H.S.

(cos A/(1+sin A)) + ((1+sin A)/cos A) = 2 sec A

Hence proved.

 

For more click on the given link:

<a href="https://mycbseguide.com/blog/ncert-solutions-class-10-maths-exercise-8-4/" ping="/url?sa=t&source=web&rct=j&url=https://mycbseguide.com/blog/ncert-solutions-class-10-maths-exercise-8-4/&ved=2ahUKEwiAh6LGlLPsAhWhQ3wKHRY_BY0QFjADegQIAhAC" rel="noopener" target="_blank">NCERT Solutions for Class 10 Maths Exercise 8.4 ...</a>

Patel Sangita 5 years, 1 month ago

Yes

Kirti Deshwal 5 years, 1 month ago

We have to solve all parts of question 5
  • 1 answers

Yogita Ingle 5 years, 1 month ago

Length of the boundary of the semicircular park = 90 m
⇒ πr + 2r = 90
⇒ r(22/7 + 2) = 90
⇒ r = (90*7)/36
⇒ r = 17.5 m
Area of the semicircular park = 1/2πr²
= 1/2*22/7*17.5*17.5
= 481.25 sq m

  • 4 answers

Navnoor Singh 5 years, 1 month ago

Secant is a line which touches the circle at two points

Jaat Shab 5 years, 1 month ago

Secant is a line that touces the circle at two points.

Harchitha Narayanan 5 years, 1 month ago

a line that intersects the curve at a minimum of two distinct points. The word secant comes from the Latin word secare, meaning to cut. In the case of a circle, a secant will intersect the circle at exactly two points.

Deborpita Saha 5 years, 1 month ago

Secant is a line that touces the circle at two points.
  • 1 answers

Gaurav Seth 5 years, 1 month ago

Height of the well = 14 m
Diameter of the well = 3 m
So, Radius of the well = 3/2 m
Volume of the earth taken out of the well = πr²h
= 22/7*(3/2)²*14
= 99 cu m
Outer radius of the embankment = R = (3/2 + 4)m = 11/2 m
Area of embankment = outer area - inner area
⇒ = πR² - πr²
= 22/7*[(11/2)² - (3/2)²]
= 22/7*[(121/4) - (9/4)]
= 22/7 × 112/4
= 88 m²
Height of the embankment = Volume/Area
= 99/88
Height of the embankment = 1.125 m

  • 2 answers

Navnoor Singh 5 years, 1 month ago

1/2x - 3+1/x -5=10/9 1/2x -3+1/x =10/9+5 1/2x -4/x=50/9 1/x -1/x=50/9*2/4 2(1/x) =50/18 1/x =25/18 X= 18/25

Navnoor Singh 5 years, 1 month ago

¿
  • 1 answers

Gaurav Seth 5 years ago

A n s w e r

Step-by-step explanation:  We are given the following :

We are to prove the following relation :

We will be using the following trigonometric formula :

We have

Hence proved.

  • 2 answers

Priyanshu Naagar 5 years, 1 month ago

It is the type of planning in which we used to plan on use of some limited resources like water for that our future generations can also use them

Divya Saini Divya Saini 5 years, 1 month ago

resource planning is the act of allocating and utilizing resources ( for ex - machinery , tools , rooms , etc .
  • 3 answers

Deborpita Saha 5 years, 1 month ago

Option iv is correct as the difference between the no s are same.

Mukul Kumar 5 years, 1 month ago

I is the correct answer. Because D (common difference) of I id same i.e., 0 in each. Hence it will form an AP

Satish Yadav 5 years, 1 month ago

Iv
  • 4 answers

Navnoor Singh 5 years, 1 month ago

55+76+97-47+5 =131+102-47 =233-47 =186

Divya Saini Divya Saini 5 years, 1 month ago

176

Md Rehan 5 years, 1 month ago

233-47= 186

Priya Jeph 5 years, 1 month ago

186
  • 3 answers

Navnoor Singh 5 years, 1 month ago

56,22,221

King Adithya H M... 5 years, 1 month ago

562,221

Gaurav Seth 5 years, 1 month ago

5 5 5 5   5 5 5 + 6 6 66 6 =

5 6 2 2 2 2 1

  • 1 answers

Yogita Ingle 5 years, 1 month ago

Hence, solution of the system of equation is x= -5/4, y = -1/4 

  • 1 answers

Kuldeep Singh 5 years, 1 month ago

Plz give me ans
  • 1 answers

Gaurav Seth 5 years, 1 month ago

 

Frequency distribution table of less than type is as follows:            

Daily income     

(in Rs)            

(upper class limits)

Cumulative frequency

Less than 120

12

Less than 140

12 + 14 = 26

Less than 160

26 + 8 = 34

Less than 180

34 + 6 = 40

Less than 200

40 + 10 = 50

 

Now taking upper class limits of class intervals on x-axis and their respective frequencies on y-axis, we can draw its ogive as follows:

Here, N = 50

N/2 = 25

Now, mark the point on curve whose y-coordinate is 25, its corresponding x-coordinate is 138.5. So median of this data is 138.5 (approximately). 

  • 1 answers

Vishal Yadav 5 years, 1 month ago

A line,which touches a circle at a point and that point is perpendicular to the radius of the circle.
  • 2 answers

Md Rehan 5 years, 1 month ago

4 . 58

Tarannum Jahan 5 years, 1 month ago

Root 21 = root 3×7
  • 1 answers

Paritosh Suman 5 years, 1 month ago

27
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App