No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Yogita Ingle 4 years, 9 months ago

AB = Height of tower

BC = 30 m

∠ACB = 30°

InΔABC

Hence The height of tower is 17.320 m

  • 1 answers

Yogita Ingle 4 years, 9 months ago

Given :

           

To Find : solve using substitution method

Solution :

  -----1

 ------2

Substitute the value of x from 1 in 2

So, x = 2 and y = 3

  • 4 answers

Himanshu Kumar 4 years, 9 months ago

Rhne do jarruri nhi hai

Manya Mahajan 4 years, 9 months ago

This is the link friend . https://youtu.be/blbvcpzxKzo Please please please support me by subscribing because I am new to YouTube .

Manya Mahajan 4 years, 9 months ago

https://youtu.be/blbvcpzxKzo

Disha Mondal 4 years, 9 months ago

Can u please share the link for your timetable video
  • 1 answers

Yogita Ingle 4 years, 9 months ago

Step 1: Draw a line segment AB of length 7.6 cm.

Step 2: Draw any ray AX, making an acute angle with AB.

Step 3: Locate 13 ( = m + n ) points  on AX so that 

Step 4: Join 

Step 5: Through the point  ( m = 5 ) , draw a line parallel to  ( by making an angle equal to  )  at  intersecting AB at the point C.

So, we get

⇒ AC : CB = 5 : 8

⇒ AC = 2.9 cm  and CB = 4.7 cm

  • 1 answers

Manya Mahajan 4 years, 9 months ago

Please visit my channel cheersome Manya on YouTube . Please support me by subscribing
  • 5 answers

Pappu Kumar 4 years, 9 months ago

Algorithiem propagation

Varun Sairaaj 4 years, 9 months ago

arithmetic progression

Aditya Chauhan 4 years, 9 months ago

Arithmetic progression

Ambika Ambika 4 years, 9 months ago

The full form of A.P is Arithmetic progression

Ambika Ambika 4 years, 9 months ago

Which subject ???
  • 2 answers

King Adithya H M... 4 years, 9 months ago

ANSWER Multiply the equation 8x+5y=9 by 3 and equation 3x+2y=4 by 3 to make the coefficients of x equal. Then we get the equations: 24x+15y=27.........(1) 24x+16y=32.........(2) Subtract Equation (1) from Equation (2) to eliminate x, because the coefficients of x are the same. So, we get (24x−24x)+(16y−15y)=32−27 i.e. y=5 Substituting this value of y in the equation 8x+5y=9, we get 8x+25=9 i.e. 8x=−16 i.e. x=−2 Hence, the solution of the equations is x=−2,y=5.

Anmol Agarwal 4 years, 9 months ago

Let 1 and 2 be equation 1 and 2 respectively Multiplying equation 1 by 2 16x+ 10y = 18---- equation 3 Multiplying equation 2 by 5 15x +10y =20------ equation 4 equation 3-equation 4 16x+10y=18 -(+15x+10y=20) ___________________ x=-2 Putting value of x in equation 3 16(-2)+10y=18 -32+10y=18 10y=18+32 10y=50 Y=50÷10 Y=10
  • 1 answers

Manya Mahajan 4 years, 9 months ago

Please visit my channel cheersome Manya. I am providing gud and free content to various classes. If you want to become topper, then pls subscribe
Gd
  • 2 answers

Aamir Nizami 4 years, 9 months ago

Aloof

Nitin Sharma 4 years, 9 months ago

2+4
  • 1 answers

Ambika Ambika 4 years, 9 months ago

1) polynomials 2) pair of linear equation in two varible 3) quadratic equation 4) Arithmetic progressions 5) coordinate geometry 6) surface areas and volume 7) statics 8) probablity I don't know about other chapter's this much only I know.
  • 1 answers

King Adithya H M... 4 years, 9 months ago

2. Write four solutions for each of the following equations: (i) 2x+y = 7 Solution: To find the four solutions of 2x+y =7 we substitute different values for x and y Let x = 0 Then, 2x+y = 7 (20)+y = 7 y = 7 (0,7) Let x = 1 Then, 2x+y = 7 (2×1)+y = 7 2+y = 7 y = 7-2 y = 5 (1,5) Let y = 1 Then, 2x+y = 7 (2x)+1 = 7 2x = 7-1 2x = 6 x = 6/2 x = 3 (3,1) Let x = 2 Then, 2x+y = 7 (2×2)+y = 7 4+y = 7 y =7-4 y = 3 (2,3) The solutions are (0, 7), (1,5), (3,1), (2,3) (ii) πx+y = 9 Solution: To find the four solutions of πx+y = 9 we substitute different values for x and y Let x = 0 Then, πx+y = 9 (π0)+y = 9 y = 9 (0,9) Let x = 1 Then, πx +y = 9 (π×1)+y = 9 π+y = 9 y = 9- (1, 9-) Let y = 0 Then, πx+y = 9 πx+0 = 9 πx = 9 x = 9/ (9/,0) Let x = -1 Then, πx + y = 9 (×-1) + y = 9 -+y = 9 y = 9+π (-1,9+) The solutions are (0,9), (1,9-), (9/,0), (-1,9+) (iii) x = 4y Solution: To find the four solutions of x = 4y we substitute different values for x and y Let x = 0 Then, x = 4y 0 = 4y 4y= 0 y = 0/4 y = 0 (0,0) Let x = 1 Then, x = 4y 1 = 4y 4y = 1 y = 1/4 (1,1/4) Let y = 4 Then, x = 4y x= 4×4 x = 16 (16,4) Let y = Then, x = 4y x = 4×1 x = 4 (4,1) The solutions are (0,0), (1,1/4), (16,4), (4,1)
  • 2 answers

Nayan Mishra 4 years, 9 months ago

Yogita a great job...

Yogita Ingle 4 years, 9 months ago

an​=a+(n−1)d

a3​=4=a+2d ....(1)

a9​=−8=a+8d ....(2)

∴4−2d=−8d−8

−2d+8d=−8−4

6d=−12

d=−2​

a=4−2d

=4+4=8

an​=0,a=8,d=−2

0=8+(n−1)×(−2)

0=8−2n+2

2n=10

n=5

  • 2 answers

Yogita Ingle 4 years, 9 months ago

The first 3-digit number which is divisible by 7 is 105

The last 3-digit number which is divisible by 7 is 994

The list of 3-digit numbers divisible by 7 are

105, 112, 119,…..994 which forms an A.P

Consider a formula

T(n) = a + (n – 1)d

Where

a = 105

d = 7

T(n) = 994

994 = 105 + (n – 1)7

889 = 7n – 7

7n = 896

n = 128

∴ There are 128 3-digits number which are divisible by 7.

King Adithya H M... 4 years, 9 months ago

128 3 ∴ There are 128 3-digits number which are divisible by 7.
  • 2 answers

Ambika Ambika 4 years, 9 months ago

Thank you

Sumaila Ali Choudhary??? 4 years, 9 months ago

Plzz request to manya mam to teach us that subject and accept ur and my request
  • 1 answers

Yogita Ingle 4 years, 9 months ago

Step 1: Draw segment AB of length 7.6 cm using a ruler.

Step 2: Draw a ray AC having an acute angle with line AB.

Step 3: Mark 13 equidistant points on ray AC, A1​,A2​,A3​,...,A13​

Step 4: Join A13​ to B

Step 5: Draw A5​P parallel to A13​B.

Point P divides AB in the ratio 5:8. Measuring the lengths, we get AP=2.9 cm and PB=4.7 cm.

  • 1 answers

Yogita Ingle 4 years, 10 months ago

Factorise 3825 as follows:

3825=3×3×5×5×17=32×52×17

Since, 3,5 and 17 are prime numbers as these are the numbers that are only divisible by themselves. 

Hence, 3825=32×52×17

  • 0 answers
  • 1 answers

King Adithya H M... 4 years, 10 months ago

https://www.shaalaa.com/question-bank-solutions/solve-x-1-x-1-2-x-2-4-x-4-x-1-2-3-nature-roots_3618#z=57ZopElj
  • 1 answers

Gaurav Seth 4 years, 10 months ago

Let a is the first term and d is the common difference .


(m - n) = -2a(m-n)/2 -(m-n)(m+n)/2+(m-n)d/2
1 = -2a/2 - (m+n)/2 + d/2
1 = -1/2 {2a + (m+n-1)d} ---------(1)


from equation (1)
S_{m+n} = -(m+n)

  • 2 answers

Meraj Alam 4 years, 10 months ago

Par Aapne isme=ke baad wala kyu nhi Likha h

Gaurav Seth 4 years, 10 months ago

Solution:

LHS = 

Divide numerator and denominator by cosQ , we get

=

/* By Trigonometric identity:

Sec²Q-tan²Q = 1 */

After cancellation, we get

Multiply numerator and denominator by (secQ-tanQ), we get

= 

= RHS

  • 0 answers
  • 2 answers

Alisha. Afreen 4 years, 9 months ago

Thanks ?

Gaurav Seth 4 years, 10 months ago

The radius of 1st circle, r1 = 21/2 cm (as diameter D is given as 21 cm)

So, area of gold region = π r1= π(10.5)= 346.5 cm2

Now, it is given that each of the other bands is 10.5 cm wide,

So, the radius of 2nd circle, r2 = 10.5cm+10.5cm = 21 cm

Thus,

∴ Area of red region = Area of 2nd circle − Area of gold region = (πr22−346.5) cm2

= (π(21)2 − 346.5) cm2

= 1386 − 346.5

= 1039.5 cm2

Similarly,

The radius of 3rd circle, r3 = 21 cm+10.5 cm = 31.5 cm

The radius of 4th circle, r4 = 31.5 cm+10.5 cm = 42 cm

The Radius of 5th circle, r5 = 42 cm+10.5 cm = 52.5 cm

For the area of nth region,

A = Area of circle n – Area of circle (n-1)

∴ Area of blue region (n=3) = Area of third circle – Area of second circle

= π(31.5)2 – 1386 cm2

= 3118.5 – 1386 cm2

= 1732.5 cm2

∴ Area of black region (n=4) = Area of fourth circle – Area of third circle

= π(42)2 – 1386 cm2

= 5544 – 3118.5 cm2

= 2425.5 cm2

∴ Area of white region (n=5) = Area of fifth circle – Area of fourth circle

= π(52.5)2 – 5544 cm2

= 8662.5 – 5544 cm2

= 3118.5 cm2

  • 2 answers

Yogita Ingle 4 years, 10 months ago

Two vertices of an equilateral triangle are (0, 0) and (3, √3).

Let the third vertex of the equilaterla triangle be (x, y)

Distance between (0, 0) and (x, y) = Distance between (0, 0) and (3, √3) = Distance between (x, y) and (3, √3)

√(x2 + y2) = √(3+ 3) = √[(x - 3)2 + (y - √3)2]
x2 + y= 12
x+ 9 - 6x + y2 + 3 - 2√3y = 12
24 -  6x - 2√3y = 12
- 6x - 2√3y = - 12
3x + √3y = 6
x = (6 - √3y) / 3
⇒ [(6 - √3y)/3]2 + y2 = 12
⇒ (36 + 3y2 - 12√3y) / 9 + y2 = 12
⇒ 36 + 3y2 - 12√3y + 9y2 = 108
⇒ - 12√3y + 12y2 - 72 = 0
⇒ -√3y + y2 - 6 = 0
⇒ (y - 2√3)(y + √3) = 0
⇒ y = 2√3 or - √3
If y = 2√3, x = (6 - 6) / 3 = 0
If y = -√3, x = (6 + 3) / 3 = 3
So, the third vertex of the equilateral triangle = (0, 2√3) or (3, -√3).

Pramod Kumar 4 years, 10 months ago

(0,4)

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App