Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Vaibhav Gupta 7 years, 9 months ago
- 0 answers
Posted by Arsh Sidhu 7 years, 9 months ago
- 4 answers
∂Αяѕнαиαα ყα∂Αѵ ??? 7 years, 9 months ago
Online Only On Brnly Geniusvatsone 7 years, 9 months ago
Posted by Rishita Sethia 7 years, 9 months ago
- 0 answers
Posted by Pradhnya Mehta 7 years, 9 months ago
- 1 answers
Harsh Bamotra 7 years, 9 months ago
Posted by Srishti Virwani 7 years, 9 months ago
- 2 answers
Renu Yadav 7 years, 9 months ago
Posted by Shahwaiz Alam 7 years, 9 months ago
- 1 answers
Posted by Ankit Parmar 7 years, 9 months ago
- 1 answers
Posted by Devild Back 7 years, 9 months ago
- 2 answers
Posted by Ankit Gupta 7 years, 9 months ago
- 3 answers
Posted by Anish Jain 7 years, 9 months ago
- 1 answers
Ra Cartin 7 years, 9 months ago
Posted by Shraddha Solanki 7 years, 9 months ago
- 0 answers
Posted by Pranjal Kumar 6 years, 4 months ago
- 1 answers
Sia ? 6 years, 4 months ago
In {tex}\triangle{/tex}ADC,
{tex}\tan 30 ^ { \circ } = \frac { H - 200 } { x }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { \sqrt { 3 } } = \frac { H - 200 } { x }{/tex}
{tex}\Rightarrow \quad x = \sqrt { 3 } {/tex}(H - 200) m. ............(1)
In {tex}\triangle{/tex}ADF,
{tex}\tan 60 ^ { \circ } = \frac { H + 200 } { x }{/tex}
{tex}\sqrt { 3 } = \frac { H + 200 } { x }{/tex}
{tex}\sqrt3x=H+200{/tex}...............(2)
here H is height of cloud above the lake.

Substituting the value of x from (1) into (2) we get
3(H - 200) = H + 200
3H - 600 = H + 200
2H = 800
H = 400 m
So height of the cloud above the lake is 400 m.
Posted by Devashish K 6 years, 4 months ago
- 1 answers
Sia ? 6 years, 4 months ago
Let us find HCF of 48 and 18
{tex}48 = 18 \times 2 + 12{/tex}
{tex}18 = 12 \times 1 + 6{/tex}
{tex}12 = 6 \times 2 + 0{/tex}
Hence HCF (48, 18) = 6
Now, 6 = 18 - 12 {tex}\times{/tex} 1
6 = 18 - (48 - 18 {tex}\times{/tex} 2)
6 = 18 - 48 {tex}\times{/tex} 1 + 18{tex}\times{/tex}2
6 = 18 {tex}\times{/tex} 3 - 48 {tex}\times{/tex} 1
6 = 18 {tex}\times{/tex} 3 + 48 {tex}\times{/tex}(-1)
i.e., 6 = 18x + 48y ........ (1)
where x= 3, y = -1
{tex}\therefore{/tex} 6 = 18 {tex}\times{/tex} 3 + 48 {tex}\times{/tex} (-1)
= 18 {tex}\times{/tex} 3 + 48 {tex}\times{/tex} (-1) + 18 {tex}\times{/tex} 48 - 18 {tex}\times{/tex} 48
= 18(3 + 48) + 48(-1 - 18)
= 18 {tex}\times{/tex} 51 + 48 {tex}\times{/tex} (-19)
6 = 18x + 48y ...... (2)
where x = 51, y = -19
Hence, x and y are not unique.
Posted by Abhishek Verma 7 years, 9 months ago
- 4 answers
Varsha Saini 7 years, 9 months ago
Posted by Aakash Rajoriya 7 years, 9 months ago
- 1 answers
Posted by Eva Maijoli 7 years, 9 months ago
- 4 answers
Posted by Shahana Aziyaa Azmi 6 years, 4 months ago
- 1 answers
Sia ? 6 years, 4 months ago
Given,
tan A = n tan B
{tex} \Rightarrow{/tex} tanB = {tex}\frac{1}{n}{/tex}tan A
{tex}\Rightarrow{/tex} cotB = {tex}\frac { n } { \tan A }{/tex}..........(1)
Also given,
sin A = m sin B
{tex}\Rightarrow{/tex} sin B = {tex}\frac{1}{m}{/tex}sin A
{tex}\Rightarrow{/tex} cosec B = {tex}\frac { m } { \sin A }{/tex}.....(2)
We know that, cosec2B - cot2B = 1, hence from (1) & (2) :-
{tex} \quad \frac { m ^ { 2 } } { \sin ^ { 2 } A } - \frac { n ^ { 2 } } { \tan ^ { 2 } A } = 1{/tex}
{tex}\Rightarrow \quad \frac { m ^ { 2 } } { \sin ^ { 2 } A } - \frac { n ^ { 2 } \cos ^ { 2 } A } { \sin ^ { 2 } A } = 1{/tex}
{tex}\Rightarrow \quad \frac { m ^ { 2 } - n ^ { 2 } \cos ^ { 2 } A } { \sin ^ { 2 } A } = 1{/tex}
{tex}\Rightarrow{/tex} m2 - n2cos2A = sin2A
{tex}\Rightarrow{/tex} m2 - n2cos2A = 1 - cos2A
{tex}\Rightarrow{/tex} m2 - 1 = n2cos2A - cos2A
{tex}\Rightarrow{/tex} m2 - 1 = (n2 - 1) cos2A
{tex}\Rightarrow \quad \frac { m ^ { 2 } - 1 } { n ^ { 2 } - 1 } ={/tex} cos2A
Posted by Mohini Kapoor 7 years, 9 months ago
- 1 answers
Posted by Navneet Singh 7 years, 9 months ago
- 4 answers
Navneet Singh 7 years, 9 months ago
Posted by Aditya Jaiswal 7 years, 9 months ago
- 3 answers
Posted by Md Faiz Malik 7 years, 9 months ago
- 1 answers
Posted by Samriddhi Sharma 7 years, 9 months ago
- 4 answers
Posted by Ayan Anwar 7 years, 9 months ago
- 1 answers
Posted by Navneet Singh 7 years, 9 months ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide