No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 4 answers

Ayush Gujjar 7 years, 8 months ago

Quadratic equation, polynomial, pair of linear equations in two variable

Vikansh Taneja 7 years, 8 months ago

Construction probability stats and coordinate geometry

Aditi Goyal 7 years, 8 months ago

According to blue print triangles , trignometry ,statics r most important and contain highest marks

Aurthur Strange 7 years, 8 months ago

Construction, real numbers, probability, polynomial
  • 3 answers

Aurthur Strange 7 years, 8 months ago

Corllary of bpt

Amanpreet Singh 7 years, 8 months ago

Bpt and its converse,phythagoras and converse

Om Pandey 7 years, 8 months ago

Plz tell us improve question of geomatry
  • 4 answers

Fucker Ready To Fuck 7 years, 8 months ago

Dont waste ur time.Give 2 hrs for each ch

Amanpreet Singh 7 years, 8 months ago

r u serious

Amanpreet Singh 7 years, 8 months ago

10 for each

Neha Neha 7 years, 8 months ago

10
  • 3 answers

Jasmeen Kaur 7 years, 8 months ago

U can also get it from this app also

Jasmeen Kaur 7 years, 8 months ago

From oye examz app or from meritnation last year sample paper solutions

Shivani K 7 years, 8 months ago

On google
  • 0 answers
  • 3 answers

Khushbu J 7 years, 8 months ago

yes, as I had saw in the sample pppr issued by cbse there is question of probability from optional exercise .

Shushant Kumar Sinha 7 years, 8 months ago

According to me no

Arya Ak 7 years, 8 months ago

Yez
  • 3 answers

Khushbu J 7 years, 8 months ago

ofcourse if u want good rank.

Chakkara Shaji 7 years, 8 months ago

If u do so, u will get nice marks

Himanshu Shekhar 7 years, 8 months ago

On your choice
  • 3 answers

Arif Iqbal Rahman 7 years, 8 months ago

Ohhh sorry

Himanshu Shekhar 7 years, 8 months ago

Neeche kisi ne pre board likha h

Arif Iqbal Rahman 7 years, 8 months ago

Preboard nhi board ka bol rha hu
  • 3 answers

M K 7 years, 8 months ago

Result june ko aayega board ka

Charu Vatsal 7 years, 8 months ago

What??? Classes are starting from April??

Aruhi Sharma 7 years, 8 months ago

From pre board result
  • 2 answers

Anshu Rajpoot 7 years, 8 months ago

If the no. 6 n for any n end with digit zero if the no. divisible by,5 .that is the prime factorisation contain 5 but this is not possible because 6n=(2×3)n.the prime factorisation of 6 n = 2 and 3 not 5 so there is no natural no. n for which 6 n end with digit zero

Mohd Abdullah Asim 7 years, 8 months ago

6n has 2 and 3 as it's factors. So it can't be written in the form of 2m5n. So it can't end with zero.
  • 2 answers

Himanshu Shekhar 7 years, 8 months ago

Really

Arif Iqbal Rahman 7 years, 8 months ago

Arre ye toh tumhare upar hai tum jaha bhi admission loge waha ke timing se start hoga na
  • 1 answers

Mudit Bhatia 7 years, 8 months ago

1+sin x /cos x
  • 1 answers

Sia ? 6 years, 5 months ago

tan A = {tex}=\frac{1}{\cot A}{/tex}
{tex}\Rightarrow{/tex} tan2 A = {tex}\frac{1}{\cot ^{2} A}{/tex}
{tex}\Rightarrow{/tex} sec2 A - 1 = {tex}\frac{1}{\cot ^{2} A}{/tex}
{tex}\Rightarrow{/tex} sec2 A = {tex}\frac{1}{\cot ^{2} A}{/tex}+ 1
{tex}\Rightarrow{/tex} secA = {tex}\frac{1+\cot ^{2} A}{\cot ^{2} A}{/tex}
{tex}\Rightarrow{/tex} sec A = {tex}\sqrt{\frac{1+\cot ^{2} A}{\cot ^{2} A}}{/tex}
{tex}\Rightarrow{/tex} {tex}\frac{1}{\cos A}=\sqrt{\frac{1+\cot ^{2} A}{\cot ^{2} A}}{/tex}
{tex}\Rightarrow{/tex} cos A = {tex}\sqrt{\frac{\cot ^{2} A}{1+\cot ^{2} A}}{/tex} {tex}=\frac{\cot A}{\sqrt{1+\cot ^{2} A}}{/tex}
{tex}\therefore{/tex} cos A = {tex}\frac{\cot A}{\sqrt{1+\cot ^{2} A}}{/tex}

  • 9 answers

M K 7 years, 8 months ago

No idea sare school ka alag alag date hai school open hone ka.. Mera school 16 april ko khul raha hai

Shivani K 7 years, 8 months ago

Katilo Wala Naam Kyu rkha h or Kuch ni milaa
Hehe

Shivani K 7 years, 8 months ago

Niche wale ka ans dekho
Kya hua?

Shivani K 7 years, 8 months ago

????
For CBSE.... Other boards will start from june
Yes

Krishna Mishra 7 years, 8 months ago

15000 April se
  • 2 answers

Darshit Ahir 7 years, 8 months ago

OKkkkkkkkk
Kabhi book khol lia karo
  • 1 answers

Sia ? 6 years, 5 months ago


Given: Two triangles ABC and DEF such that {tex}\triangle {/tex}ABC {tex} \sim {/tex} {tex}\triangle {/tex}DEF
To prove: {tex}\frac{{ar\left( {\vartriangle ABC} \right)}}{{ar\left( {\vartriangle DEF} \right)}} = \frac{{A{B^2}}}{{D{E^2}}} = \frac{{B{C^2}}}{{E{F^2}}} = \frac{{A{C^2}}}{{D{F^2}}}{/tex}
Construction: Draw AL {tex} \bot {/tex} BC and DM {tex} \bot {/tex} EF
Proof:- Since similar triangles are equiangular and their corresponding sides are proportional
{tex}\therefore {/tex} {tex}\triangle {/tex} ABC {tex} \sim {/tex}{tex}\triangle {/tex}DEF
{tex}\Rightarrow {/tex} {tex}\angle{/tex} A = {tex}\angle{/tex} D, {tex}\angle{/tex} B = {tex}\angle{/tex} E, {tex}\angle{/tex} C ={tex}\angle{/tex}F
And {tex}\frac{{AB}}{{DE}} = \frac{{BC}}{{EF}} = \frac{{AC}}{{DF}}{/tex} .......(i)
In {tex}\triangle {/tex} ALB and {tex}\triangle {/tex} DMB,
{tex}\angle{/tex} 1= {tex}\angle{/tex} 2 and {tex}\angle{/tex} B= {tex}\angle{/tex} E
{tex}\Rightarrow {/tex} {tex}\triangle {/tex} ALB {tex} \sim {/tex}{tex}\triangle {/tex}DME [By AA similarity]
{tex}\Rightarrow {/tex}{tex}\frac{{AL}}{{DM}} = \frac{{AB}}{{DE}}{/tex} .....(ii)
From (i) and (ii), we get
{tex}\frac{{AB}}{{DE}} = \frac{{BC}}{{EF}} = \frac{{AC}}{{DF}} = \frac{{AL}}{{DM}}{/tex} ......(iii)
Now{tex}\frac{{area\left( {\vartriangle ABC} \right)}}{{area\left( {\vartriangle DEF} \right)}} = \frac{{\frac{1}{2}\left( {BC \times AL} \right)}}{{\frac{1}{2}\left( {BF \times DM} \right)}}{/tex}
{tex} \Rightarrow \frac{{area\left( {\vartriangle ABC} \right)}}{{area\left( {\vartriangle DEF} \right)}} = \frac{{BC}}{{EF}} \times \frac{{AL}}{{DM}}{/tex}
{tex} \Rightarrow \frac{{area\left( {\vartriangle ABC} \right)}}{{area\left( {\vartriangle DEF} \right)}} = \frac{{BC}}{{EF}} \times \frac{{BC}}{{EF}} = \frac{{B{C^2}}}{{E{F^2}}}{/tex}
Hence, {tex}\frac{{area\left( {\vartriangle ABC} \right)}}{{area\left( {\vartriangle DEF} \right)}} = \frac{{A{B^2}}}{{D{E^2}}} \times \frac{{B{C^2}}}{{E{F^2}}} = \frac{{A{C^2}}}{{D{F^2}}}{/tex}
Let the largest side of the largest triangle be x cm
Using above theorem,
{tex}\frac{{{x^2}}}{{{{27}^2}}} = \frac{{144}}{{81}} \Rightarrow \frac{x}{{27}} = \frac{{12}}{9}{/tex}
{tex}\Rightarrow {/tex} x = 36 cm

  • 0 answers
  • 2 answers

Heaven Angel Pankti 7 years, 8 months ago

Iska kya mtlb h???

Shivani K 7 years, 8 months ago

Is app m h aap dekhlo.
  • 1 answers

Suzain Pathan 7 years, 8 months ago

Let n = 8q+1,8q+3..... Now n square -1 so, 8q square -1 = 64q square + 16 q +1-1 result is 64 q square +16 q now take 8 comman from it and that comman 8 will be cancelled out by 8 in divide so it is divisible by 8
  • 1 answers

Sia ? 6 years, 5 months ago

We will find zeroes of p(x)  which are not the zeroes of q(x) by using Factor theorem and Euclid’s division algorithm.

By factor theorem if q(x) is a factor of p(x), then r(x) must be zero.

p(x) = x5 – x4 – 4x3 + 3x2 + 3x + b

q(x) = x3 + 2x2 + a

So, by factor theorem remainder must be zero i.e.,

r(x) = 0
Value of r(x) is - ax2 - x2 + 3ax + 3x - 2a + b .
- ax2 - x2 + 3ax + 3x - 2a + b = 0x2 + 0x + 0
⇒ -(a + 1)x2 + (3a + 3)x + (b – 2a) = 0x2 + 0x + 0

Comparing the coefficients of x2, x and constant. on both sides, we get

-(a + 1) = 0 and 3a + 3 = 0 and b – 2a = 0
a + 1 = 0
a = -1
and  3a + 3 = 0
3a = - 3
a = -1
Put a = -1 in b - 2a = 0
Then b – 2(-1) = 0
⇒ b + 2 = 0
⇒ b = -2

For a = -1 and b = -2, zeroes of q(x) will be zeroes of p(x).

For zeroes of p(x),  p(x) = 0

⇒ (x3 + 2x2 + a)(x2 – 3x + 2) = 0 [∵ a = -1]

⇒ [x3 + 2x2 – 1][x2 – 2x – 1x + 2] =0

⇒ (x3 + 2x2 – 1)[x(x – 2) – 1(x – 2) = 0

⇒ (x3 + 2x2 – 1) (x – 2) (x – 1) = 0
⇒   (x – 2)  = 0 and (x – 1) = 0
⇒  x = 2 and x = 1

Hence, x = 2 and 1 are not the zeroes of q(x).

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App