No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Taran Kamboj 7 years, 9 months ago

Is Harmanpreet you are from ambala

Amanpreet Singh 7 years, 9 months ago

8
  • 3 answers

Sandy Sandy 7 years, 9 months ago

Bisector of 90 and 120 dgree

Vaishali Sawlani 7 years, 9 months ago

is it in our syllabus?

Thazneem Saleem 7 years, 9 months ago

90 degree +15 degree
  • 1 answers

Mr Lovely 5 years, 8 months ago

Aaj hi se suru kiya h
  • 1 answers

Keshav Bindal 7 years, 9 months ago

4u(u+2) = u=0 or -2
  • 0 answers
  • 3 answers

P A 7 years, 9 months ago

In such situations use step deviation and give reason that it is easy to calculate and time saving

Yuvraj Shivhare 7 years, 9 months ago

But how

Joy Chandel 7 years, 9 months ago

It depends on the no. Of class intervals and frequency
  • 2 answers

Keshav Bindal 7 years, 9 months ago

a3 + b3 & a3 - b3 ...???

Joy Chandel 7 years, 9 months ago

Identity I: (a + b)2 = a2 + 2ab + b2 Identity II: (a – b)2 = a2 – 2ab + b2 Identity III: a2 – b2= (a + b)(a – b) Identity IV: (x + a)(x + b) = x2 + (a + b) x + ab Identity V: (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca Identity VI: (a + b)3 = a3 + b3 + 3ab (a + b) Identity VII: (a – b)3 = a3 – b3 – 3ab (a – b) Identity VIII: a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
  • 1 answers

Joy Chandel 7 years, 9 months ago

Yes?
Rth
  • 1 answers

Thazneem Saleem 7 years, 9 months ago

What's this
  • 2 answers

Khushi Yadav 7 years, 9 months ago

0,5

Vaishali Sawlani 7 years, 9 months ago

i think it is 5??
  • 1 answers

Rohit Raj 7 years, 9 months ago

Yes
  • 7 answers

Shaik Amaan 7 years, 9 months ago

11

Allen Rathi 7 years, 9 months ago

10

Rohit Raj 7 years, 9 months ago

12

Shreyash Srivastava 7 years, 9 months ago

14

Aakriti Jain 7 years, 9 months ago

13

Sahil Goria 7 years, 9 months ago

9

Amanpreet Singh 7 years, 9 months ago

7 and yours
  • 1 answers

Sia ? 6 years, 6 months ago


According to the question,A metallic right circular cone 20 cm high and whose vertical angel is 60° is cut into two parts at the middle of its height by a plane parallel to its base if the frustum so obtained be drawn into a wire of uniform diameter {tex}\frac { 1 } { 16 }{/tex} cm.
Total height of cone = 20 cm and Vertex angle = 30°
Let the radius of cone be r{tex}_2{/tex}.
{tex}\therefore \frac { r _ { 2 } } { 20 } = \tan 30 ^ { \circ } \Rightarrow \frac { 1 } { \sqrt { 3 } }{/tex} 
{tex}r _ { 2 } = \frac { 20 } { \sqrt { 3 } } \mathrm { cm }{/tex} 
The height of the cone cut off = 10 cm Let its radius be r1
{tex}\Rightarrow \frac { r _ { 1 } } { 10 } = \tan 30 ^ { \circ } \Rightarrow r _ { 1 } = \frac { 10 } { \sqrt { 30 } } \mathrm { cm }{/tex} 
Let the length of wire be l
Its radius {tex}= \frac { 1 } { 32 } \mathrm { cm }{/tex} 
{tex}\therefore{/tex} Volume of frustum = Volume of wire
{tex}\Rightarrow \frac { 1 } { 3 } \pi \times h \left[ \left( r _ { 1 } \right) ^ { 2 } + \left( r _ { 2 } \right) ^ { 2 } + \left( r _ { 1 } r _ { 2 } \right) \right] = \pi r ^ { 2 } l{/tex} 
{tex}\Rightarrow \frac { 1 } { 3 } \times 10 \times \pi \left[ \left( \frac { 10 } { 3 } \right) ^ { 2 } + \left( \frac { 20 } { 3 } \right) ^ { 2 } + \frac { 10 } { 3 } \times \frac { 20 } { 3 } \right]{/tex} 
{tex}= \pi \left( \frac { 1 } { 32 } \right) ^ { 2 } \times l{/tex} 
{tex}\Rightarrow \frac { 1 } { 3 } \times 10 \left[ \frac { 100 } { 9 } + \frac { 400 } { 9 } + \frac { 200 } { 9 } \right] = \frac { 1 } { 32 \times 32 } \times l{/tex} 
{tex}\Rightarrow \frac { 1 } { 3 } \times 10 \times \frac { 700 } { 9 } = \frac { 1 } { 32 } \times \frac { 1 } { 32 } \times l{/tex} 
{tex}\Rightarrow l = \frac { 32 \times 32 \times 700 \times 10 } { 3 \times 9 }{/tex}
= 796444.4 cm.
Hence, the length of wire = 7964.44 m

  • 3 answers

Khushbu Summy 7 years, 9 months ago

Yss

Riya Bhardwaj 7 years, 9 months ago

Yeah they are important.

Khushbu . 7 years, 9 months ago

yes
  • 1 answers

Vaishali Sharma 7 years, 9 months ago

Kal Mila phir btayenge
  • 1 answers

Keshav Bindal 7 years, 9 months ago

Are you sure to prove is that, I tried this que but I proved 2sin2alpha = 1 + sin2alpha.sin2beta
  • 1 answers

Sia ? 6 years, 6 months ago

Let coordinate of P be (0, y) and of Q be (x,0)
A(2, -5) is mid - point of PQ.
By Section Formula,
(2, -5) = {tex}\left( \frac { 0 + x } { 2 } , \frac { y + 0 } { 2 } \right){/tex}
{tex}\therefore 2=\frac x2 \text{ and }-5=\frac y2{/tex}
x = 4 and y = -10.
Therefore, P is (0, -10) and Q is (4, 0).

  • 1 answers

Dollon D 7 years, 9 months ago

Given in ncert book
  • 1 answers

Prabhjot Kaur 7 years, 9 months ago

When answer is a negative number
  • 1 answers

Sia ? 6 years, 6 months ago

Let a and d be the first term and common difference respectively of the given A.P. Then
an = a + (n - 1)d
{tex}\frac { 1 } { n } ={/tex} mth term 
{tex}\Rightarrow \frac { 1 } { n } {/tex}= a + ( m - 1 ) d ...(i)
{tex}\frac { 1 } { m }{/tex}= nth term
{tex}\Rightarrow \frac { 1 } { m } {/tex}= a + ( n - 1 ) d ...(ii)
On subtracting equation (ii) from equation (i), we get
{tex}\frac { 1 } { n } - \frac { 1 } { m } = {/tex} [a+  (m-1) d] -[ a+ (n -1)d]
=  a + md - d - a - nd + d
{tex}= ( m - n ) d{/tex}
{tex} \Rightarrow \frac { m - n } { m n } = ( m - n ) d {/tex}
{tex}\Rightarrow d = \frac { 1 } { m n }{/tex}
Putting d = {tex}\frac { 1 } { m n }{/tex} in equation (i), we get
{tex}\frac { 1 } { n } = a + \frac { ( m - 1 ) } { m n } {/tex}
{tex}\Rightarrow \frac { 1 } { n } = a + \frac { 1 } { n } - \frac { 1 } { m n } {/tex}
{tex}\Rightarrow a = \frac { 1 } { m n }{/tex}
{tex}\therefore{/tex} (mn)th term = a + (mn - 1) d
{tex}\frac { 1 } { m n } + ( m n - 1 ) \frac { 1 } { m n } {/tex}{tex}\left[ \because a = \frac { 1 } { m n } = d \right]{/tex}
= {tex}\frac { 1 } { m n } + \frac { mn } { m n } - \frac { 1 } { m n }{/tex}
= 1

  • 1 answers

Parth Muchhal 7 years, 9 months ago

What is the forth point
  • 2 answers

Keshav Bindal 7 years, 9 months ago

X = 24 & y = 2916

Arihant Choudhary 7 years, 9 months ago

x-24 y-2916
  • 3 answers

Keshav Bindal 7 years, 9 months ago

Anyone know any other formula of equilateral ∆, except area

Keshav Bindal 7 years, 9 months ago

Area = (√3)/4 a^2

Charu Vatsal 7 years, 9 months ago

route 3/4a2
  • 2 answers

Anjali Singh 7 years, 9 months ago

Me

Keshav Bindal 7 years, 9 months ago

Me

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App