Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Supritam Debnath 7 years, 9 months ago
- 1 answers
Posted by Akash Kumar 5 years, 8 months ago
- 1 answers
Anshu Malik 7 years, 9 months ago
Posted by Pikachu X 7 years, 9 months ago
- 1 answers
Posted by Ťhűğ Łïfë 7 years, 9 months ago
- 1 answers
Ayush Agrawal 7 years, 9 months ago
Posted by Ayushi Singh 7 years, 9 months ago
- 3 answers
Darshanaa Yadav 7 years, 9 months ago
Posted by Visha Joshi 7 years, 9 months ago
- 2 answers
Posted by Isbella S 7 years, 9 months ago
- 1 answers
Ayush Agrawal 7 years, 9 months ago
Posted by Raja Mungara 7 years, 9 months ago
- 1 answers
Ayush Kadsholi 7 years, 9 months ago
Posted by Srishti Sharma 7 years, 9 months ago
- 3 answers
Ayush Agrawal 7 years, 9 months ago
Posted by Chirag Chandel 7 years, 9 months ago
- 0 answers
Posted by Kajal Dhinan 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Let us suppose that one man alone can finish the work in x days and one boy alone can finish it in y days. Then,
one man's one day's work {tex}= \frac { 1 } { x }{/tex}
One boy's one day's work {tex}= \frac { 1 } { y }{/tex}
{tex}\therefore{/tex} Eight men's one day's work = {tex}\frac { 8 } { x }{/tex}
{tex}12\ boy's{/tex} one day's work = {tex}\frac { 12 } { y }{/tex}
According to question it is given that {tex}8\ men{/tex} and {tex}12\ boys{/tex} can finish the work in {tex}10\ days{/tex}
{tex}10 \left( \frac { 8 } { x } + \frac { 12 } { y } \right) = 1 \Rightarrow \frac { 80 } { x } + \frac { 120 } { y } = 1{/tex} .................(i)
Again, {tex}6\ men{/tex} and {tex}8\ boys{/tex} can finish the work in {tex}14\ days{/tex}.
{tex}\therefore \quad 14 \left( \frac { 6 } { x } + \frac { 8 } { y } \right) = 1 \Rightarrow \frac { 84 } { x } + \frac { 112 } { y } = 1{/tex} ...........(ii)
Putting {tex}\frac { 1 } { x } = u{/tex} and {tex}\frac { 1 } { y } = v{/tex} in equations (i) and (ii), we get
{tex}80u + 120u - 1 = 0{/tex}
{tex}84u + 112v - 1 = 0{/tex}
By using cross-multiplication,
{tex}\Rightarrow \frac { u } { - 120 + 112 } = \frac { - v } { - 80 + 84 } = \frac { 1 } { 80 \times 112 - 120 \times 84 }{/tex}
{tex}\Rightarrow \quad \frac { u } { - 8 } = \frac { v } { - 4 } = \frac { 1 } { - 1120 }{/tex}
{tex}\Rightarrow \quad u = \frac { - 8 } { - 1120 } = \frac { 1 } { 140 } \text { and } v = \frac { - 4 } { - 1120 } = \frac { 1 } { 280 }{/tex}
{tex}u = \frac { 1 } { 140 } \Rightarrow \frac { 1 } { x } = \frac { 1 } { 140 } \Rightarrow x = 140{/tex}
{tex}v = \frac { 1 } { 280 } \Rightarrow \frac { 1 } { y } = \frac { 1 } { 280 } \Rightarrow y = 280{/tex}
One man alone can finish the work in {tex}140\ days{/tex} and one boy alone can finish the work in {tex}280\ days{/tex}.
Posted by Manasvi Soni 7 years, 9 months ago
- 0 answers
Posted by Parth Zirape 7 years, 9 months ago
- 1 answers
Posted by Animesh Singh 7 years, 9 months ago
- 0 answers
Posted by Jamshed Khan 7 years, 9 months ago
- 1 answers
S Sharma 7 years, 9 months ago
Posted by Avani Neil 7 years, 9 months ago
- 3 answers
Ayush Agrawal 7 years, 9 months ago
Posted by Chetan Agrawal 7 years, 9 months ago
- 3 answers
Priya Dharshini ? 7 years, 9 months ago
Posted by Mohit Kushwah 5 years, 8 months ago
- 1 answers
Posted by Priyal Bansal 7 years, 9 months ago
- 4 answers
Anmol Yadav 7 years, 9 months ago
Posted by Victor The Victorious 7 years, 9 months ago
- 0 answers
Posted by Akarsh Mishra 7 years, 9 months ago
- 5 answers
Posted by Yash Goyal 7 years, 9 months ago
- 1 answers
Keshav Bindal 7 years, 9 months ago
Posted by Sarbojit Sinha 7 years, 9 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
According to the question, {tex}\triangle ABC {/tex} is an equilateral triangle.

In {tex}\triangle{/tex}ABD, using Pythagoras theorem,
{tex}\Rightarrow{/tex} AB2 = AD2 + BD2
{tex}\Rightarrow{/tex} BC2 = AD2 + BD2, (as AB = BC = CA)
{tex}\Rightarrow{/tex} (2 BD)2 = AD2 + BD2, (perpendicular is the median in an equilateral triangle)
{tex}\Rightarrow{/tex} 4BD2 - BD2 = AD2
{tex}\therefore{/tex} 3BD2 = AD2
0Thank You