No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago

According to the question, {tex}\triangle ABC {/tex} is an equilateral triangle.
In {tex}\triangle{/tex}ABD, using Pythagoras theorem,

{tex}\Rightarrow{/tex} AB2 = AD2 + BD2
{tex}\Rightarrow{/tex} BC2 = AD2 + BD2, (as AB = BC = CA)
{tex}\Rightarrow{/tex} (2 BD)2 = AD2 + BD2, (perpendicular is the median in an equilateral triangle)
{tex}\Rightarrow{/tex} 4BD2 - BD2 = AD2
{tex}\therefore{/tex} 3BD2 = AD2

  • 1 answers

Megha Prajapati 7 years, 9 months ago

Google for question paper
  • 1 answers

Prajjwal Srivastava 7 years, 9 months ago

No your method should be Right
  • 1 answers

Ayush Agrawal 7 years, 9 months ago

Please follow my tips : Learn all the theorems of triangle and circle chapter it will come 100% . Most important theorem is areas of similar triangle. If any question come from any chapter please write given proof in all the questions
  • 3 answers

Dk Chaudhary 7 years, 9 months ago

If it ask then we have to write otherwise not

Darshanaa Yadav 7 years, 9 months ago

It is compulsory to write steps of construction after all it is going to be ask in 4 marks questions.

Harshita Vatyani 7 years, 9 months ago

It will ask you to write
  • 2 answers

Ayush Agrawal 7 years, 9 months ago

Squaring on both the sides in which is given

Prajjwal Srivastava 7 years, 9 months ago

Wait I am going to give u ans as soon
  • 1 answers

Ayush Agrawal 7 years, 9 months ago

Please follow my tips : Learn all the theorems of triangle and circle chapter it will come 100% . Most important theorem is areas of similar triangle. If any question come from any chapter please write given proof in all the questions
  • 1 answers

Ayush Kadsholi 7 years, 9 months ago

S= n/2 [2Xa+(n-1)d] 100= 10/2 [2X10+(10-1)d] 100= 5 [20+ 9d] 20= 20+9d 20-20= 9d 0= 9d 0= d 16th term= a+(16-1)d = 10+15X0 = 10+0 16th term= 10 A.P.= 10, 10, 10, ..............
  • 3 answers

Ayush Agrawal 7 years, 9 months ago

How to prepare for board for passing marks Please follow my tips : Learn all the theorems of triangle and circle chapter it will come 100% . Most important theorem is areas of similar triangle. If any question come from any chapter please write given proof in all the questions

Anuj Bansal 7 years, 9 months ago

Of course not

Darshanaa Yadav 7 years, 9 months ago

No
6ri
  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Let us suppose that one man alone can finish the work in x days and one boy alone can finish it in y days. Then,
one man's one day's work {tex}= \frac { 1 } { x }{/tex}
One boy's one day's work {tex}= \frac { 1 } { y }{/tex}
{tex}\therefore{/tex} Eight men's one day's work = {tex}\frac { 8 } { x }{/tex}
{tex}12\ boy's{/tex} one day's work = {tex}\frac { 12 } { y }{/tex}
According to question it is given that  {tex}8\ men{/tex} and {tex}12\ boys{/tex} can finish the work in {tex}10\ days{/tex}
{tex}10 \left( \frac { 8 } { x } + \frac { 12 } { y } \right) = 1 \Rightarrow \frac { 80 } { x } + \frac { 120 } { y } = 1{/tex} .................(i)
Again, {tex}6\ men{/tex} and {tex}8\ boys{/tex} can finish the work in {tex}14\ days{/tex}.
{tex}\therefore \quad 14 \left( \frac { 6 } { x } + \frac { 8 } { y } \right) = 1 \Rightarrow \frac { 84 } { x } + \frac { 112 } { y } = 1{/tex} ...........(ii)
Putting {tex}\frac { 1 } { x } = u{/tex} and {tex}\frac { 1 } { y } = v{/tex} in equations (i) and (ii), we get
{tex}80u + 120u - 1 = 0{/tex}
{tex}84u + 112v - 1 = 0{/tex}
By using cross-multiplication, 
{tex}\Rightarrow \frac { u } { - 120 + 112 } = \frac { - v } { - 80 + 84 } = \frac { 1 } { 80 \times 112 - 120 \times 84 }{/tex}
{tex}\Rightarrow \quad \frac { u } { - 8 } = \frac { v } { - 4 } = \frac { 1 } { - 1120 }{/tex}
{tex}\Rightarrow \quad u = \frac { - 8 } { - 1120 } = \frac { 1 } { 140 } \text { and } v = \frac { - 4 } { - 1120 } = \frac { 1 } { 280 }{/tex}
{tex}u = \frac { 1 } { 140 } \Rightarrow \frac { 1 } { x } = \frac { 1 } { 140 } \Rightarrow x = 140{/tex}
{tex}v = \frac { 1 } { 280 } \Rightarrow \frac { 1 } { y } = \frac { 1 } { 280 } \Rightarrow y = 280{/tex}
One man alone can finish the work in {tex}140\ days{/tex} and one boy alone can finish the work in {tex}280\ days{/tex}.

  • 0 answers
  • 1 answers

Leo Ghost 7 years, 9 months ago

Please make the question clear
  • 0 answers
  • 1 answers

S Sharma 7 years, 9 months ago

I think this question is not from the examination point of view
  • 3 answers

Sarda Ji 7 years, 9 months ago

Yes!!!!!

Ayush Agrawal 7 years, 9 months ago

Please follow my tips : Learn all the theorems of triangle and circle chapter it will come 100% . Most important theorem is areas of similar triangle. If any question come from any chapter please write given proof in all the questions

S Sharma 7 years, 9 months ago

No
  • 3 answers

Priya Dharshini ? 7 years, 9 months ago

Formula for doing this is = lenght of arc × radius/2 12×6÷2 =36 cm

Riya Rajput 7 years, 9 months ago

36 cm sq

Nishant Kalrs 7 years, 9 months ago

yar ap maths la lo
  • 1 answers

Zoya Khan 7 years, 9 months ago

1/√3
  • 4 answers

Anmol Yadav 7 years, 9 months ago

Is baar tension mat lo hmko pta hai board ka pressure hai pr questions ncert se aayega

Vishnu Jha 7 years, 9 months ago

Abe nahi ayega

Anmol Yadav 5 years, 8 months ago

Nhi aayega tension mat lo

Priyal Bansal 5 years, 8 months ago

Pls answer
  • 5 answers

Harshita Vatyani 7 years, 9 months ago

Yes otherwise marks will be deducted

Anmol Yadav 5 years, 8 months ago

No not ??

Dhruv Bhati 5 years, 8 months ago

No no??

Anmol Yadav 5 years, 8 months ago

No way

Vishnu Jha 7 years, 9 months ago

Yes
  • 1 answers

Keshav Bindal 7 years, 9 months ago

Radius is perpendicular to tangent at point of contact, for larger circle it is perpendicular on chord from centre which always bisect the chord
  • 2 answers

Anuj Bansal 7 years, 9 months ago

Rational number

Anmol Yadav 7 years, 9 months ago

Integer

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App