No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Varsh Vaibhav 7 years, 9 months ago

Check theorem 1.4 on page no.12

Sanjana Yadav 7 years, 9 months ago

Bhaiya main class 10 me jaugi that's why meko nhi pata
  • 6 answers

Sanjana Yadav 7 years, 9 months ago

Wow Aniket

Aniket Singh 7 years, 9 months ago

Jyada nahi bas har lesson ncert se padh aur samajh lo toath me pass ho jaoge bhai aap

Sanjana Yadav 7 years, 9 months ago

Ok ,only practice can you make best

Sanjana Yadav 7 years, 9 months ago

Aap pass nhi ho sakte math me

Sanjana Yadav 7 years, 9 months ago

Omg

Yukrant Patle 7 years, 9 months ago

Practice
  • 1 answers

Atul Kumar 7 years, 9 months ago

Yes
  • 1 answers

Aniket Singh 7 years, 9 months ago

Last minutes notes (LMR)Taiyar kar lo bhai
  • 5 answers

Prerna J 7 years, 9 months ago

ok..let us not scratch the brain at last moment

Prerna J 7 years, 9 months ago

often we have ques. stating they r different

Prerna J 7 years, 9 months ago

but..

H T 7 years, 9 months ago

They are same..

Yukrant Patle 7 years, 9 months ago

No any difference
  • 1 answers

Sia ? 6 years, 6 months ago

Let n be any positive integer. Applying Euclids division lemma with divisor = 5, we get
{tex}\style{font-family:Arial}{\begin{array}{l}n=5q+1,5q+2,5q+3\;and\;5q+4\;\\\end{array}}{/tex}
Now (5q)2 = 25q2 = 5m, where m = 5q2, which is an integer;
{tex}\style{font-family:Arial}{\begin{array}{l}(5q\;+\;1)^{\;2}\;=\;25q^2\;+\;10q\;+\;1\;=\;5(5q^2\;+\;2q)\;+\;1\;=\;5m\;+\;1\\where\;m\;=\;5q^2\;+\;2q,\;which\;is\;an\;integer;\\\;(5q\;+\;2)^2\;=\;25q^2\;+\;20q\;+\;4\;=\;5(5q^2\;+\;4q)\;+\;4\;=\;5m\;+\;4,\\\;where\;m\;=\;5q^2\;+\;4q,\;which\;is\;an\;integer;\\\;(5q\;+\;3)^{\;2}\;=\;25q^2\;+\;30q\;+\;9\;=\;5(5q^2\;+\;6q+\;1)\;+\;4\;=\;5m\;+\;4,\\\;where\;m\;=\;5q^2\;+\;6q\;+\;1,\;which\;is\;an\;integer;\\\;(5q\;+\;4)^2\;=\;25q^2\;+\;40q\;+\;16\;=\;5(5q^2\;+\;8q\;+\;3)\;+\;1\;=\;5m\;+\;1,\;\\where\;m\;=\;5q^2\;+\;8q\;+\;3,\;which\;is\;an\;integer\\\end{array}}{/tex}
Thus, the square of any positive integer is of the form 5m, 5m + 1 or 5m + 4 for some integer m.
It follows that the square of any positive integer cannot be of the form 5m + 2 or 5m + 3 for some integer m.

  • 2 answers

Rohit P 7 years, 9 months ago

96 sqcm

Keshav Bindal 7 years, 9 months ago

96 sq. cm
  • 1 answers

Harry Potter 7 years, 9 months ago

it is polynomial?????
  • 2 answers

Keshav Bindal 7 years, 9 months ago

400 × 0.57 + 2 ÷ 111{1} = 400 × 0.57 + 0.018 = 228 + 0.018 = 228.018

H T 7 years, 9 months ago

12.355...
  • 2 answers

Jeevan Kashyap 7 years, 9 months ago

With free hands

Srushti Bagi 7 years, 9 months ago

Free hand
  • 4 answers

Aditya Makwana 7 years, 9 months ago

It's okay

Srushti Bagi 7 years, 9 months ago

Thnx dude?

Aditya Makwana 7 years, 9 months ago

Let's Two digit number be X and y So 7(10x+y)=4(10y+x) After solving it we get eq.. 1 X-y=3 Y-x=3 Eq.. 2

. . 7 years, 9 months ago

36
  • 1 answers

Varsh Vaibhav 7 years, 9 months ago

Bhai WhatsApp pr baat kr
Mak
  • 1 answers

H T 7 years, 9 months ago

???
  • 1 answers

Sia ? 6 years, 6 months ago

Distance travelled by the train = 480 km
Let the speed of the train be x kmph
Time taken for the journey = {tex}\frac { 480 } { x }{/tex}
Given speed is decreased by 8 kmph
Hence the new speed of train = (x – 8) kmph
Time taken for the journey = {tex}\frac { 480 } { x - 8 }{/tex}
{tex}\frac { 480 } { x - 8 } = \frac { 480 } { x } + 3{/tex}
{tex}\Rightarrow{/tex} {tex}\frac { 480 } { x - 8 } - \frac { 480 } { x } = 3{/tex}
{tex}\Rightarrow \frac { 480 ( x - x + 8 ) } { x ( x - 8 ) } = 3{/tex}
{tex}\Rightarrow \frac { 480 \times 8 } { x ( x - 8 ) } = 3{/tex}
{tex}\Rightarrow 3 x ( x - 8 ) = 480 \times 8{/tex}
{tex}\Rightarrow x(x - 8 ) = 160\times 8 \\ \Rightarrow   x^2 - 8x - 1280 = 0{/tex}
On solving we get x = 40
Thus the speed of train is 40 kmph.

  • 1 answers

Raj Sharma 7 years, 9 months ago

Alpha+beta=3-root3/5 and alphabeta=3+root3/5 X^2-(alpha +beta)x+alphabeta X^2 - 3-root3/5X+ 3+root3/5
  • 1 answers

Varsh Vaibhav 7 years, 9 months ago

p+1upon p-1
  • 1 answers

Puja Guru 7 years, 9 months ago

Nice...
  • 1 answers

Sia ? 6 years, 5 months ago

Let us assume that <m:omath><m:r>√</m:r></m:omath>3 is rational.
That is, we can find integers a and b (<m:omath><m:r>≠0)</m:r></m:omath> such that a and b are co-prime

{tex}\style{font-family:Arial}{\begin{array}{l}\sqrt3=\frac ab\\b\sqrt3=a\\on\;squaring\;both\;sides\;we\;get\\3b^2=a^2\end{array}}{/tex}

Therefore, a2 is divisible by 3,
 it follows that a is also divisible by 3.
So, we can write a = 3c for some integer c.
Substituting for a, we get 3b2 = 9c2, that is, b​​​​​​2 = 3c2
This means that b2 is divisible by 3, and so b is also divisible by 3
 Therefore, a and b have at least 3 as a common factor.
But this contradicts the fact that a and b are co-prime.
This contradiction has arisen because of our incorrect assumption that <m:omath><m:r>√</m:r></m:omath>3 is rational.
So, we conclude that <m:omath><m:r>√</m:r></m:omath>3 is irrational.

  • 9 answers

Sanjana Yadav 7 years, 9 months ago

Mera bol ne mtlab h ki main class 10 jaugi samjh Bhaiya

H T 7 years, 9 months ago

What? Sry bt I didnt get u...

Sanjana Yadav 7 years, 9 months ago

Main na abhi class 9 hu aur main 10 me jaugi , that's why

H T 7 years, 9 months ago

Sanjana aap itani shocked kyu ho?

Siddhi Sharma 7 years, 9 months ago

Thank you☺

Sanjana Yadav 7 years, 9 months ago

Kya tum bhi ???wow

Sanjana Yadav 7 years, 9 months ago

Kya????

Amanpreet Singh 7 years, 9 months ago

same to you

Sanjana Yadav 7 years, 9 months ago

Pagal ho gayi ho kya
  • 2 answers

Varsh Vaibhav 7 years, 9 months ago

1st complete your question

Puja Guru 7 years, 9 months ago

Ur question is half!!!
  • 1 answers

Sia ? 6 years, 6 months ago

Given: PQ is a diameter of a circle with centre O. The lines AB and CD are the tangents at P and Q respectively.
 
To prove: AB {tex}\parallel{/tex} CD
Proof: AB is a tangent to the circle at P and Op is the radius through the point of contact
{tex}\because{/tex} {tex}\angle{/tex}OPA = 90o .......(1) [The tangent at any point of a circle is perpendicular to the radius through the point of contact]
{tex}\because{/tex} CD is a tangent to the circle at Q and OQ is the radius through the point of contact.
{tex}\therefore{/tex} {tex}\angle{/tex}OQD = 90o ........(2) [The tangent at any point of a circle is perpendicular to the radius through the point of contact]
From (1) and (2),
{tex}\angle{/tex}OPA  = {tex}\angle{/tex}OQD
But these form a pair of equal alternate angles.
{tex}\because{/tex} AB {tex}\parallel{/tex} CD

  • 6 answers

Varsh Vaibhav 7 years, 9 months ago

It's okay

Raj Sharma 7 years, 9 months ago

Q=axaxaxb P=axaxbxbxb Hcf=a^2xb=axaxbxbxb Lcm=a^2xbxaxb^2=axaxbxaxbxb LCM(a^3xb^3) x HCF(a^2xb)=a^5xb^4

Srushti Bagi 7 years, 9 months ago

Thanks..vaibhav

Varsh Vaibhav 7 years, 9 months ago

LCM = a³b³ and HCF=a²b.......LCM×HCF= a^5b^4 which is equal to product of numbers....that is a²b³×a³b=a^5b^4

Srushti Bagi 7 years, 9 months ago

No wrong ans

Aashish Aashish 7 years, 9 months ago

53-;
  • 3 answers

Avni Rathore 7 years, 9 months ago

Smallest prime number is 2 and smallest composite number is 4 so their hcf will be 2

Avni Rathore 7 years, 9 months ago

2

Raj Kumar 7 years, 9 months ago

1
  • 0 answers
  • 1 answers

Varsh Vaibhav 7 years, 9 months ago

3

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App