No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 5 months ago

Let the numbers be x and 15 - x.

According to question,
{tex}\frac { 1 } { x } + \frac { 1 } { 15 - x } = \frac { 3 } { 10 }{/tex}
{tex}\Rightarrow \quad \frac { 15 - x + x } { x ( 15 - x ) } = \frac { 3 } { 10 }{/tex}
{tex}\Rightarrow \quad \frac { 15 } { x ( 15 - x ) } = \frac { 3 } { 10 }{/tex}

Cross multiply,
{tex}\Rightarrow{/tex}{tex}150=3x(15-x){/tex}
{tex}\Rightarrow{/tex}    {tex}150=45x-3x^2{/tex}

{tex}\Rightarrow 150=3(15x-x^2){/tex}
{tex}\Rightarrow{/tex} x2 - 15x + 50 = 0
{tex}\Rightarrow{/tex} x2 - 10x - 5x + 50 = 0
{tex}\Rightarrow{/tex} x(x - 10) - 5(x -10) = 0
{tex}\Rightarrow{/tex} (x - 10)(x - 5) = 0
{tex}\Rightarrow{/tex} x - 10 = 0 or, x - 5 = 0 {tex}\Rightarrow{/tex} x = 10 or, x = 5
Therefore,  numbers are 10 and 5

  • 1 answers

Tanishka Gaur 7 years, 9 months ago

Under root x square plus y square
  • 1 answers

Harshita Vatyani 7 years, 9 months ago

Thanks? and same to you
  • 4 answers

Aakriti Jain 7 years, 9 months ago

Thanks

Naresh Krish 7 years, 9 months ago

Sunni thevidaua mavana

Aryan Nachiketh 7 years, 9 months ago

KANNADA songs suno yaar

Harshita Vatyani 7 years, 9 months ago

Gaane suno specially punjabi
  • 2 answers

Mohd Shezal 7 years, 9 months ago

Kya de

Naresh Krish 7 years, 9 months ago

Puundda de
  • 1 answers

Sia ? 6 years, 5 months ago

Let the origin be O and the coordinates of the origin are (0,0)
We can find the distance of P from the origin by using the distance formula, i.e.
OP = {tex}\sqrt{x^2 + y^2}{/tex}

  • 2 answers

Aryan Nachiketh 7 years, 9 months ago

No .not of any guides or reference books.only simple and mindblowing questions would appear

Budheswar Das 7 years, 9 months ago

Yes
  • 3 answers

Budheswar Das 7 years, 9 months ago

2

Baby Mishra 7 years, 9 months ago

HCF is 2

Baby Mishra 7 years, 9 months ago

2
  • 3 answers

Budheswar Das 7 years, 9 months ago

Padhai karo easy hoga

Chirag Kumar 7 years, 9 months ago

Kya kre kuch samaj nhi aa rha hai

Chirag Kumar 7 years, 9 months ago

Mujhe bhi yrrr
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}\sqrt {({x^2} + {y^2})} {/tex}units

  • 1 answers

Sia ? 6 years, 6 months ago

Assume denominator = x then, numerator =  x - 1
{tex}\therefore{/tex} Fraction = {tex}\frac{x - 1}{x}{/tex}
According  to given situation, we have 

{tex}\frac{x - 1 + 3}{x + 3}{/tex} = {tex}\frac{x - 1}{x}{/tex} + {tex}\frac{3}{28}{/tex}
{tex}\Rightarrow{/tex}{tex}\frac{x + 2}{x + 3}{/tex} - {tex}\frac{x - 1}{x}{/tex} = {tex}\frac{3}{28}{/tex}
{tex}\Rightarrow{/tex}{tex}\frac { ( x + 2 ) x - ( x - 1 ) ( x + 3 ) } { ( x + 3 ) x }{/tex} = {tex}\frac{3}{28}{/tex}
{tex}\Rightarrow{/tex}{tex}\frac { x ^ { 2 } + 2 x - \left( x ^ { 2 } + 2 x - 3 \right) } { x ^ { 2 } + 3 x }{/tex} = {tex}\frac{3}{28}{/tex}
{tex}\Rightarrow{/tex}3{tex}\times{/tex}28 = 3(x2 + 3x)
{tex}\Rightarrow{/tex}x2 + 3x - 28 = 0

Factorize the above quadratic equation, we get
{tex}\Rightarrow{/tex}(x + 7)(x - 4) = 0 {tex}\Rightarrow{/tex}x = -7 or x = 4
Rejecting x = -7 {tex}\therefore{/tex}x = 4
{tex}\therefore{/tex} Fraction is {tex}\frac{4 - 1}{4}{/tex} = {tex}\frac{3}{4}{/tex}

  • 1 answers

Nyayir Riba 7 years, 9 months ago

Thnk n u too
  • 1 answers

Chirag Kumar 7 years, 9 months ago

To kya kre
  • 0 answers
  • 1 answers

S Sharma 7 years, 9 months ago

same 2 u
  • 1 answers

Chirag Kumar 7 years, 9 months ago

Chinta Mt kr yaar
  • 2 answers

Chirag Kumar 7 years, 9 months ago

1\4πrsquare

Shubham Sihag 7 years, 9 months ago

90/360× 22/7×r×r
  • 3 answers

Royal Sher Gill 7 years, 9 months ago

In CBSE app there is CBSE most important questions read it

Udbhav Gautam 7 years, 9 months ago

Main chapters of cbse which get full marks

Darshanaa Yadav 7 years, 9 months ago

All questions of Ncert

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App