No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Shruti Mishra 7 years, 8 months ago

This is imaginary number

Shruti Mishra 7 years, 8 months ago

No
  • 1 answers

Sia ? 6 years, 5 months ago

Let a be the positive integer and b = 4.
Then, by Euclid’s algorithm, a = 4q + r for some integer q ≥ 0 and r = 0, 1, 2, 3 because 0 ≤ r < 4.
So, a = 4q or 4q + 1 or 4q + 2 or 4q + 3.
{tex}(4q)^3\;=\;64q^3\;=\;4(16q^3){/tex}
= 4m, where m is some integer.
{tex}(4q+1)^3\;=\;64q^3+48q^2+12q+1=4(\;16q^3+12q^2+3q)+1{/tex}
= 4m + 1, where m is some integer.
{tex}(4q+2)^3\;=\;64q^3+96q^2+48q+8=4(\;16q^3+24q^2+12q+2){/tex}
= 4m, where m is some integer.
{tex}(4q+3)^3\;=\;64q^3+144q^2+108q+27{/tex}

=4×(16q3+36q2+27q+6)+3
= 4m + 3, where m is some integer.
Hence, The cube of any positive integer is of the form 4m, 4m + 1 or 4m + 3 for some integer m.

  • 2 answers

Himay Sankhe 7 years, 8 months ago

sin60 degree=underoot3/2

Anvi Srivastava 7 years, 8 months ago

it will be root3/2
  • 1 answers

Yamini Yadav 7 years, 8 months ago

14516632
  • 1 answers

Sia ? 6 years, 6 months ago

If p(x) is a non zero polynomial and p(k2) = 0
Then, k2 is a zero of polynomial p(x) . So, degree of p(x) should be more than or equal to one.
Therefore, least degree of the p(x) is one.

  • 1 answers

Sia ? 6 years, 6 months ago

Let {tex} \alpha , \beta , \gamma{/tex} be the zeroes of polynomial f(x) = x3 - 5x2 - 2x + 24 such that {tex} \alpha\beta{/tex} = 12.
{tex} \alpha + \beta + \gamma = - \left( - \frac { 5 } { 1 } \right) = 5{/tex} ................ (i)
{tex} \alpha \beta + \beta \gamma + \gamma \alpha = \frac { - 2 } { 1 } = - 2{/tex}
and, {tex} \alpha \beta \gamma = - \frac { 24 } { 1 } = - 24{/tex}
Putting, {tex} \alpha \beta = 12{/tex} in {tex} \alpha \beta \gamma = - 24{/tex}, we get
{tex} 12 \gamma = - 24{/tex}
{tex} \Rightarrow \gamma = - \frac { 24 } { 12 } = - 2{/tex}
Putting {tex} \gamma= -2{/tex} in eq.(i), we get
{tex} \alpha + \beta - 2 = 5{/tex}
{tex} \Rightarrow \quad \alpha + \beta = 7{/tex}
Now, {tex} ( \alpha - \beta ) ^ { 2 } = ( \alpha + \beta ) ^ { 2 } - 4 \alpha \beta{/tex}
{tex} \Rightarrow \quad ( \alpha - \beta ) ^ { 2 } = 7 ^ { 2 } - 4 \times 12{/tex}
{tex} \Rightarrow \quad ( \alpha - \beta ) ^ { 2 } = 1{/tex}
{tex} \Rightarrow \quad \alpha - \beta = \pm 1{/tex}
Thus, we have
{tex} \alpha + \beta= 7{/tex}  and {tex} \alpha - \beta = 1 {/tex} or, {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= -1{/tex}
CASE I: When {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= 1{/tex}
Solving {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= 1{/tex} , we get
{tex} \alpha = 4{/tex} and {tex}\beta= 3{/tex} 
CASE II: When {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= -1{/tex}
Solving {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= -1{/tex} , we get
{tex} \alpha = 3{/tex} and {tex}\beta= 4{/tex} .
Hence, the zeros of the given polynomial are 3, 4 and - 2 or 4,3 , -2.

  • 1 answers

Sia ? 6 years, 5 months ago

Let n be an arbitrary positive integer.
On dividing n by 3, let m be the quotient and r be the remainder.
The positive integer is in the form of 3m or (3m + 1) or (3m + 2)
Then, by Euclid's division lemma, we have
n = 3m + r, where {tex}0 \leq r < 3{/tex}.
{tex}\therefore{/tex} n = 3m or (3m +1) or (3m + 2), for some integer m.
Thus, any positive integer is of the form 3m or (3m + 1) or (3m + 2) for some integer m.

  • 1 answers

Jasvinder Kaur 7 years, 8 months ago

A prime number can be divided by evenly only be 1 or itself and it must be whole no. greater than 1 Example., 5 can only divisible by 1 or 5 therefore it is a prime no.
  • 1 answers

Anirudh Gupta 7 years, 8 months ago

Contradiction means to assume something
  • 2 answers

Jasvinder Kaur 7 years, 8 months ago

441222

Ansh Prajapati 7 years, 8 months ago

441222
  • 1 answers

Sia ? 6 years, 6 months ago

Let the present ages of Aftab and his daughter be x year and y year respectively. Then the algebraic representation is
Given by the following equations:
x - 7 = 7(y - 7)
{tex}\Rightarrow{/tex} x - 7y + 42 = 0 ...(1)
And x + 3 = 3(y + 3)
{tex}\Rightarrow{/tex} x - 3y - 6 = 0 ...(2)
To, represent this equation graphically, well find two solution for each equation, These solution are given below;
For Equation (1) x - 7y + 42 = 0
{tex}\Rightarrow{/tex} 7y = x + 42
{tex}\Rightarrow y = \frac{{x + 42}}{7}{/tex}
Table 1 of solutions

x 0 7
y 6 7

For Equation (2) x - 3y - 6 = 0
{tex}\Rightarrow{/tex} 3y = x - 6
 {tex}\Rightarrow y = \frac{{x - 6}}{3}{/tex}
Table 2 of solutions

x 0 6
y -2 0

  We plot the A(0, 6) and B(7, 7)
Corresponding to the solutions in table 1 on a graph paper to get the line AB representing the equation (1) and the points C(0, -2) and D(6, 0) corresponding to the solutions in table 2 on the same graph paper to get the line CD representing the equation (2), as shown in the figure

We observe in figure that the two lines representing the two equations are intersecting at the point P(42, 12).

  • 1 answers

Jasvinder Kaur 7 years, 8 months ago

Let, the present age of aftab=x Present age of his daughter=y Seven years ago, A.T.Q (X-7)=7(y-7) X-7=7y-49 X-7y= -42. .....1 Three years hence Age of aftab=x+3 Age of his daughter=y+3 x+3=3(y+3) x+3=3y+9 x-3y=6. .......2 Therefore the algebric expression is x- 7y= -42 x-3y=6
  • 1 answers

Sia ? 6 years, 6 months ago

Given, 2x2 - 7x - 15
= 2x2 - 10x + 3x - 15
{tex}= 2x (x - 5) + 3(x - 5)\\= (x - 5)(2x + 3){/tex}

  • 1 answers

Sia ? 6 years, 6 months ago

Let usual speed = x km/hr
New speed = (x + 250)km/hr
Total distance = 1500 km
Time taken by usual speed = {tex}\frac{{1500}}{x}{/tex}hr
Time taken by new speed = {tex}\frac{{1500}}{{x + 250}}{/tex}hr
According to question,
{tex}\frac { 1500 } { x } - \frac { 1500 } { x + 250 } = \frac { 1 } { 2 }{/tex}
{tex}\Rightarrow \frac { 1500 x + 1500 \times 250 - 1500 x } { x ^ { 2 } + 250 x } = \frac { 1 } { 2 }{/tex}
{tex}\Rightarrow{/tex} x2 + 250x = 750000
{tex}\Rightarrow{/tex} x2 + 250x - 750000 = 0
{tex}\Rightarrow{/tex} x2 + 1000x - 750x - 750000 = 0
{tex}\Rightarrow{/tex} x(x + 1000) - 750(x + 1000) = 0
{tex}\Rightarrow{/tex} x = 750 or x = -1000
Therefore, usual speed is 750 km/hr, -1000 is neglected.

  • 0 answers
  • 1 answers

Hazel Sogi 7 years, 8 months ago

X=-4/3
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}2 \mathrm { x } ^ { 3 } + \mathrm { x } ^ { 2 } - 5 \mathrm { x } + 2 ; \frac { 1 } { 2 } , 1 , - 2{/tex}
Comparing the given polynomial with 
{tex}a x ^ { 3 } + b x ^ { 2 } + c x + d{/tex}, we get
a = 2, b = 1, c = 5, d = 2
Let {tex}p ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 5 x + 2{/tex}
Then,
{tex}P \left( \frac { 1 } { 2 } \right) = 2 \left( \frac { 1 } { 2 } \right) ^ { 3 } + \left( \frac { 1 } { 2 } \right) ^ { 2 } - 5 \left( \frac { 1 } { 2 } \right) + 2{/tex}
{tex}= \frac { 1 } { 4 } + \frac { 1 } { 4 } - \frac { 5 } { 2 } + 2 = 0{/tex}
{tex}p ( 1 ) = 2 ( 1 ) ^ { 3 } + ( 1 ) ^ { 2 } - 5 ( 1 ) + 2{/tex}
= 2 + 1 - 5 + 2 = 0
{tex}p ( - 2 ) = 2 ( - 2 ) ^ { 3 } + ( - 2 ) ^ { 2 } - 5 ( - 2 ) + 2{/tex}
= -16 + 4 + 10 + 2 = 0
Therefore, {tex}\frac{1}{2}{/tex}, 1 and -2 are the zeroes of
{tex}2 x ^ { 3 } + x ^ { 2 } - 5 x + 2{/tex}
So, {tex}\alpha = \frac { 1 } { 2 } , \beta = 1 \text { and } \gamma = - 2{/tex}
Therefore,
{tex}\alpha + \beta + \gamma = \frac { 1 } { 2 } + 1 + ( - 2 ) = - \frac { 1 } { 2 } = - \frac { b } { a }{/tex}
{tex}\alpha \beta + \beta \gamma + \gamma \alpha = \left( \frac { 1 } { 2 } \right) \times ( 1 ) + ( 1 ) \times ( - 2 ) + ( - 2 ) \times \left( \frac { 1 } { 2 } \right){/tex}
{tex}= \frac { 1 } { 2 } - 2 - 1 = - \frac { 5 } { 2 } = \frac { c } { a }{/tex}
{tex}\alpha \beta \gamma = \left( \frac { 1 } { 2 } \right) \times ( 1 ) \times ( - 2 ) = - 1 = \frac { - 2 } { 2 } = \frac { - d } { a }{/tex}

  • 1 answers

Abhishek Reddy 7 years, 8 months ago

11+13+3!=30
  • 1 answers

Sumit Rawal 7 years, 8 months ago

8
  • 0 answers
  • 1 answers

Abhishek Reddy 7 years, 8 months ago

Elimination method means that eliminating the first term to get an perfect equation
  • 2 answers

Abhishek Reddy 7 years, 8 months ago

C

Deepak Choudhary 7 years, 8 months ago

AB
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App