Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Sudhanshu Pandey 7 years, 8 months ago
- 2 answers
Posted by Sudhanshu Pandey 6 years, 5 months ago
- 1 answers
Sia ? 6 years, 5 months ago
Let a be the positive integer and b = 4.
Then, by Euclid’s algorithm, a = 4q + r for some integer q ≥ 0 and r = 0, 1, 2, 3 because 0 ≤ r < 4.
So, a = 4q or 4q + 1 or 4q + 2 or 4q + 3.
{tex}(4q)^3\;=\;64q^3\;=\;4(16q^3){/tex}
= 4m, where m is some integer.
{tex}(4q+1)^3\;=\;64q^3+48q^2+12q+1=4(\;16q^3+12q^2+3q)+1{/tex}
= 4m + 1, where m is some integer.
{tex}(4q+2)^3\;=\;64q^3+96q^2+48q+8=4(\;16q^3+24q^2+12q+2){/tex}
= 4m, where m is some integer.
{tex}(4q+3)^3\;=\;64q^3+144q^2+108q+27{/tex}
=4×(16q3+36q2+27q+6)+3
= 4m + 3, where m is some integer.
Hence, The cube of any positive integer is of the form 4m, 4m + 1 or 4m + 3 for some integer m.
Posted by Namanpreet Kaur 7 years, 8 months ago
- 2 answers
Posted by Mohd Nadeem 7 years, 8 months ago
- 1 answers
Posted by Gitika Mehta 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
If p(x) is a non zero polynomial and p(k2) = 0
Then, k2 is a zero of polynomial p(x) . So, degree of p(x) should be more than or equal to one.
Therefore, least degree of the p(x) is one.
Posted by Xyz Mittal 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Let {tex} \alpha , \beta , \gamma{/tex} be the zeroes of polynomial f(x) = x3 - 5x2 - 2x + 24 such that {tex} \alpha\beta{/tex} = 12.
{tex} \alpha + \beta + \gamma = - \left( - \frac { 5 } { 1 } \right) = 5{/tex} ................ (i)
{tex} \alpha \beta + \beta \gamma + \gamma \alpha = \frac { - 2 } { 1 } = - 2{/tex}
and, {tex} \alpha \beta \gamma = - \frac { 24 } { 1 } = - 24{/tex}
Putting, {tex} \alpha \beta = 12{/tex} in {tex} \alpha \beta \gamma = - 24{/tex}, we get
{tex} 12 \gamma = - 24{/tex}
{tex} \Rightarrow \gamma = - \frac { 24 } { 12 } = - 2{/tex}
Putting {tex} \gamma= -2{/tex} in eq.(i), we get
{tex} \alpha + \beta - 2 = 5{/tex}
{tex} \Rightarrow \quad \alpha + \beta = 7{/tex}
Now, {tex} ( \alpha - \beta ) ^ { 2 } = ( \alpha + \beta ) ^ { 2 } - 4 \alpha \beta{/tex}
{tex} \Rightarrow \quad ( \alpha - \beta ) ^ { 2 } = 7 ^ { 2 } - 4 \times 12{/tex}
{tex} \Rightarrow \quad ( \alpha - \beta ) ^ { 2 } = 1{/tex}
{tex} \Rightarrow \quad \alpha - \beta = \pm 1{/tex}
Thus, we have
{tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta = 1 {/tex} or, {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= -1{/tex}
CASE I: When {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= 1{/tex}
Solving {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= 1{/tex} , we get
{tex} \alpha = 4{/tex} and {tex}\beta= 3{/tex}
CASE II: When {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= -1{/tex}
Solving {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= -1{/tex} , we get
{tex} \alpha = 3{/tex} and {tex}\beta= 4{/tex} .
Hence, the zeros of the given polynomial are 3, 4 and - 2 or 4,3 , -2.
Posted by Vidhi Choudhary 6 years, 5 months ago
- 1 answers
Sia ? 6 years, 5 months ago
Let n be an arbitrary positive integer.
On dividing n by 3, let m be the quotient and r be the remainder.
The positive integer is in the form of 3m or (3m + 1) or (3m + 2)
Then, by Euclid's division lemma, we have
n = 3m + r, where {tex}0 \leq r < 3{/tex}.
{tex}\therefore{/tex} n = 3m or (3m +1) or (3m + 2), for some integer m.
Thus, any positive integer is of the form 3m or (3m + 1) or (3m + 2) for some integer m.
Posted by Shafaq Imran 7 years, 8 months ago
- 1 answers
Jasvinder Kaur 7 years, 8 months ago
Posted by Abhinay Tatamiya 7 years, 8 months ago
- 1 answers
Posted by Abdul Khan 7 years, 8 months ago
- 2 answers
Posted by Isha Panwar 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Let the present ages of Aftab and his daughter be x year and y year respectively. Then the algebraic representation is
Given by the following equations:
x - 7 = 7(y - 7)
{tex}\Rightarrow{/tex} x - 7y + 42 = 0 ...(1)
And x + 3 = 3(y + 3)
{tex}\Rightarrow{/tex} x - 3y - 6 = 0 ...(2)
To, represent this equation graphically, well find two solution for each equation, These solution are given below;
For Equation (1) x - 7y + 42 = 0
{tex}\Rightarrow{/tex} 7y = x + 42
{tex}\Rightarrow y = \frac{{x + 42}}{7}{/tex}
Table 1 of solutions
| x | 0 | 7 |
| y | 6 | 7 |
For Equation (2) x - 3y - 6 = 0
{tex}\Rightarrow{/tex} 3y = x - 6
{tex}\Rightarrow y = \frac{{x - 6}}{3}{/tex}
Table 2 of solutions
| x | 0 | 6 |
| y | -2 | 0 |
We plot the A(0, 6) and B(7, 7)
Corresponding to the solutions in table 1 on a graph paper to get the line AB representing the equation (1) and the points C(0, -2) and D(6, 0) corresponding to the solutions in table 2 on the same graph paper to get the line CD representing the equation (2), as shown in the figure

We observe in figure that the two lines representing the two equations are intersecting at the point P(42, 12).
Posted by Isha Panwar 7 years, 8 months ago
- 1 answers
Jasvinder Kaur 7 years, 8 months ago
Posted by Arpit Kumar 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Given, 2x2 - 7x - 15
= 2x2 - 10x + 3x - 15
{tex}= 2x (x - 5) + 3(x - 5)\\= (x - 5)(2x + 3){/tex}
Posted by Amit Giri 7 years, 8 months ago
- 1 answers
Posted by Amit Giri 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Let usual speed = x km/hr
New speed = (x + 250)km/hr
Total distance = 1500 km
Time taken by usual speed = {tex}\frac{{1500}}{x}{/tex}hr
Time taken by new speed = {tex}\frac{{1500}}{{x + 250}}{/tex}hr
According to question,
{tex}\frac { 1500 } { x } - \frac { 1500 } { x + 250 } = \frac { 1 } { 2 }{/tex}
{tex}\Rightarrow \frac { 1500 x + 1500 \times 250 - 1500 x } { x ^ { 2 } + 250 x } = \frac { 1 } { 2 }{/tex}
{tex}\Rightarrow{/tex} x2 + 250x = 750000
{tex}\Rightarrow{/tex} x2 + 250x - 750000 = 0
{tex}\Rightarrow{/tex} x2 + 1000x - 750x - 750000 = 0
{tex}\Rightarrow{/tex} x(x + 1000) - 750(x + 1000) = 0
{tex}\Rightarrow{/tex} x = 750 or x = -1000
Therefore, usual speed is 750 km/hr, -1000 is neglected.
Posted by Garghy Ranial 7 years, 8 months ago
- 0 answers
Posted by Yash Pal 7 years, 8 months ago
- 1 answers
Posted by Aaditya Satpute 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
{tex}2 \mathrm { x } ^ { 3 } + \mathrm { x } ^ { 2 } - 5 \mathrm { x } + 2 ; \frac { 1 } { 2 } , 1 , - 2{/tex}
Comparing the given polynomial with
{tex}a x ^ { 3 } + b x ^ { 2 } + c x + d{/tex}, we get
a = 2, b = 1, c = 5, d = 2
Let {tex}p ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 5 x + 2{/tex}
Then,
{tex}P \left( \frac { 1 } { 2 } \right) = 2 \left( \frac { 1 } { 2 } \right) ^ { 3 } + \left( \frac { 1 } { 2 } \right) ^ { 2 } - 5 \left( \frac { 1 } { 2 } \right) + 2{/tex}
{tex}= \frac { 1 } { 4 } + \frac { 1 } { 4 } - \frac { 5 } { 2 } + 2 = 0{/tex}
{tex}p ( 1 ) = 2 ( 1 ) ^ { 3 } + ( 1 ) ^ { 2 } - 5 ( 1 ) + 2{/tex}
= 2 + 1 - 5 + 2 = 0
{tex}p ( - 2 ) = 2 ( - 2 ) ^ { 3 } + ( - 2 ) ^ { 2 } - 5 ( - 2 ) + 2{/tex}
= -16 + 4 + 10 + 2 = 0
Therefore, {tex}\frac{1}{2}{/tex}, 1 and -2 are the zeroes of
{tex}2 x ^ { 3 } + x ^ { 2 } - 5 x + 2{/tex}
So, {tex}\alpha = \frac { 1 } { 2 } , \beta = 1 \text { and } \gamma = - 2{/tex}
Therefore,
{tex}\alpha + \beta + \gamma = \frac { 1 } { 2 } + 1 + ( - 2 ) = - \frac { 1 } { 2 } = - \frac { b } { a }{/tex}
{tex}\alpha \beta + \beta \gamma + \gamma \alpha = \left( \frac { 1 } { 2 } \right) \times ( 1 ) + ( 1 ) \times ( - 2 ) + ( - 2 ) \times \left( \frac { 1 } { 2 } \right){/tex}
{tex}= \frac { 1 } { 2 } - 2 - 1 = - \frac { 5 } { 2 } = \frac { c } { a }{/tex}
{tex}\alpha \beta \gamma = \left( \frac { 1 } { 2 } \right) \times ( 1 ) \times ( - 2 ) = - 1 = \frac { - 2 } { 2 } = \frac { - d } { a }{/tex}
Posted by Priya Priya 7 years, 8 months ago
- 0 answers
Posted by Abhishek Reddy 7 years, 8 months ago
- 1 answers
Posted by Sucharitha Sucharitha 7 years, 8 months ago
- 1 answers
Posted by Gurpreet Singh 7 years, 8 months ago
- 0 answers
Posted by Vishesh Sharma 7 years, 8 months ago
- 1 answers
Abhishek Reddy 7 years, 8 months ago
Posted by Pooja Kumari 7 years, 8 months ago
- 2 answers
Posted by Aryan Pareek 7 years, 8 months ago
- 0 answers
Posted by Mahesh Kumar Yadav 7 years, 8 months ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Shruti Mishra 7 years, 8 months ago
1Thank You