No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago

The given AP is:1, 4, 7, ,...................88

Here a=1 and d=4-1=3

Suppose there are nth terms=88
{tex}\mathrm{We}\;\mathrm{know}\;\mathrm{that}\;{\mathrm a}_{\mathrm n}=\mathrm a+(\mathrm n-1)\mathrm d{/tex}
Now on substitution of value of a and d we get
88 =1+(n-1)(3)
88-1= 3n - 3
87 + 3 = 3n
90 = 3n
n = 30
Hence, the 30th term of the given AP is 88.

  • 2 answers

Simran Tejasvi 7 years, 7 months ago

X+7y =l0 ;3+7.l =l0 ;so the value of this is l0

Rajbir Singh 7 years, 7 months ago

x+7y=10 3+7×1=10 10=10 1=1
  • 1 answers

Kunal Singh 7 years, 7 months ago

Find HCF of 850 n 680 respective and the HCF will be the maximum capacity
  • 1 answers

Sia ? 6 years, 6 months ago

Here we have to find HCF of 1190 and 1445 and express the HCF in the form 1190m + 1445n.
1445 = 1190 × 1 + 255
1190 = 255 × 4 + 170
255 = 170 × 1 + 85
170 = 85 × 2 + 0
So, now the remainder is 0, then HCF is 85
Now,
85 = 255 - 170
= (1445 - 1190) - (1190 - 255 × 4)
= 1445 - 1190 - 1190 + 255 × 4
= 1445 - 1190 × 2 + (1445 - 1190) × 4
= 1445 - 1190 × 2 + 1445 × 4 - 1190 × 4
= 1445 × 5 - 1190 × 6
= 1190 × (- 6) + 1445 × 5
= 1190m + 1445n , where m = - 6 and n = 5

  • 1 answers

Sia ? 6 years, 6 months ago

According to the question,
{tex}(x - 5)(x - 6) = \frac{{25}}{{{{\left( {24} \right)}^2}}}{/tex}
{tex}\Rightarrow x(x - 6) - 5(x - 6) = \frac{{25}}{{{{(24)}^2}}}{/tex}
{tex}\Rightarrow {x^2} - 6x - 5x + 30 - \frac{{25}}{{{{(24)}^2}}} = 0{/tex}
{tex}\Rightarrow {x^2} - 11x + 30 - \frac{{25}}{{{{(24)}^2}}} = 0{/tex}
{tex}\Rightarrow {x^2} - 11x + \frac{{30 \times {{24}^2} - 25}}{{{{(24)}^2}}} = 0{/tex}
{tex} \Rightarrow {x^2} - 11x + \frac{{30 \times 576 - 25}}{{{{(24)}^2}}} = 0{/tex}
{tex} \Rightarrow {x^2} - 11x + \frac{{17280 - 25}}{{{{(24)}^2}}} = 0{/tex}
{tex}\Rightarrow {x^2} - \frac{{264x}}{{24}} + \frac{{145}}{{24}} \times \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow {x^2} - \left( {\frac{{145}}{{24}} + \frac{{119}}{{24}}} \right)x + \frac{{145}}{{24}} \times \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow {x^2} - \frac{{145}}{{24}}x - \frac{{119}}{{24}}x + \frac{{145}}{{24}} \times \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow x\left( {x - \frac{{145}}{{24}}} \right) - \frac{{119}}{{24}}\left( {x - \frac{{145}}{{24}}} \right) = 0{/tex}
{tex}\Rightarrow \left( {x - \frac{{145}}{{24}}} \right)\left( {x - \frac{{119}}{{24}}} \right) = 0{/tex}
{tex}\Rightarrow x - \frac{{145}}{{24}} = 0{/tex} or {tex}x - \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow x = \frac{{145}}{{24}}{/tex} or {tex}x = \frac{{119}}{{24}}{/tex}

  • 0 answers
  • 4 answers

Abhilasha Rajput 7 years, 7 months ago

4

Namrata Nath 7 years, 7 months ago

22 logically or in maths it is 4?

Gopal Varshney 7 years, 7 months ago

4

Harsh Kapoor ❤ 7 years, 7 months ago

4
  • 0 answers
  • 1 answers

Bharat Deep 7 years, 7 months ago

(x+2) (x-2)
  • 2 answers

Shaheen Hussain 7 years, 7 months ago

121,754,766.608695

Amitabh Mondal 7 years, 7 months ago

Answer is 121754766.6
  • 1 answers

Mukesh Kumar 4 years, 7 months ago

1/3-2√5
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Yes, 257 is a prime number because it has only two distinct divisors: 1 and itself (257).

  • 1 answers

Kunal Rajour 7 years, 7 months ago

Alpha + Beta = - b/a Alpha×Beta= c/a
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

The given polynomial f(x)={tex}\text{x}^3-\text{6x}^2+\text{11x-6}{/tex}
Since 3 is a zero of p(x), so (x - 3) is a factor of f(x).
On dividing f(x) by (x - 3), we get

{tex}\therefore{/tex} f(x) = (x2 - 3x + 2)(x - 3)
= ( x2 - 2x - x + 2)( x - 3)
= [x(x - 2) -1(x - 2)](x - 3)
= (x - 1)(x - 2)(x - 3)
Now f(x)=0 if  x - 1 = 0 or x - 2 = 0 or x - 3 = 0
{tex}\Rightarrow{/tex} x = 1 or x = 2 or x = 3
{tex}\mathrm{Hence}\;\mathrm{the}\;\mathrm{remainig}\;\mathrm{roots}\;\;\mathrm{of}\;\mathrm f(\mathrm x)\;\mathrm{are}\;1\;\mathrm{and}\;2\;{/tex}

  • 2 answers

Rahul Yadav 7 years, 7 months ago

Let the value of x be 0 so the value of y you get 2 In next time you can take the value of y be 0 the value of x comes 4 Let. Let X=0. And. Y=0 (2×0) +(4×y)=8. (2×x)+(4×0)=8 Y=2. X=4

Jasandeep Singh 7 years, 7 months ago

let x be 4 2×4+4y=8 8+4y=8 4y=0 y=0
  • 1 answers

Sia ? 6 years, 6 months ago

Solution table for {tex}3x + y - 12 = 0 {/tex}

<th scope="row">x</th> <th scope="row">y</th>
0 4 2
12 0 6

Solution table for {tex}x - 3y + 6 = 0{/tex} 

<th scope="row">x</th> <th scope="row">y</th>
-6 0 -3
0 2 1


{tex}\triangle{/tex}ABC is the region bounded by the lines and x-axis.
Area {tex}\triangle{/tex}ABC = {tex}\frac{1}{2}{/tex}BC{tex}\times{/tex}AD = {tex}\frac{1}{2}{/tex}{tex}\times{/tex}10 {tex}\times{/tex}3 = {tex}15 sq.units{/tex}

  • 6 answers

Amitabh Mondal 7 years, 7 months ago

There is 0 number of solutions between 2 parallel lines

Shruti Chauhan 7 years, 7 months ago

As the lines don't meet there is no solution

Tanvi Jindal 7 years, 7 months ago

There are no solutions in parallel lines.

Deep Rai 7 years, 7 months ago

Sorry I think no solution

Deep Rai 7 years, 7 months ago

I think yes

Dhairya Varshney 7 years, 7 months ago

There are no solutions in parallel lines
  • 2 answers

Harsh Pandey 7 years, 7 months ago

5x2-29x-20 We factorise then value is (5x+4)(x-5) We find two zeros (5x+4)=-4/3 (x-5)= 5 A+B(sum of zeros) =-b/a Here A=5,B=29andC=20 -4/3 + 5 =- b/a=29/5 Here A+B=29/5 and -b/a=29/5 AB(product of zeros) AB=c/a -4/3 × 5 =c/a = 20/5 Here AB=4 and c/a=4 A(stand for Alpha) B(stand for beta)

Megha Varshney 7 years, 7 months ago

Plz give me the answer
  • 2 answers

Kunal Rajour 7 years, 7 months ago

Value of pie is iraational but pie is a rational number. It can be written in the form of p/q but it cannot be expressed in decimal expensions as it has non terminating and non repeating decimal expension.

Nipun Goyal 7 years, 7 months ago

22/7

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App