No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Vivek Kohli 7 years, 6 months ago

Y =34-39/13 -5/13

Vivek Kohli 7 years, 6 months ago

3x +5y= 2 ~equation 1 2x-y=3. Or 2x-3=y ~equ 2 By putting the value of y in equation 2 we get 3x+5×(2x-3)=2 3x+10x-15=2 13x=2+15 X=17/13 Then putting he value of x in equation 2 we get the value of y 2(17/13)-3=y Y=(34/13)-3 34-39/3 Y=-5/3

Hemant Hemant Kumar 7 years, 6 months ago

Let, 3x+5y=2. is eq1 2x - y =3. is eq2 In eq1, 3x + 5y =2 5y=2-3x y= 2 /5- 3x/5 From eq1 we get, y= 2/5 - 3x/5 Now, We substitute y's value in eq2 2x - (2/5-3x/5)=3 2x -2/5+3x/5=3 10x-2+3x/5=3 13x-2=15 13X =15+2 X. =17/13 Now, we find x=17/13 In eq1 we put x=17/13 3(17/13)+5y=2 51/13+5y=2 5y= 2-51/13 5y=26-51/13 5y=-25/13 Y= -25/13 ×5 Y=-5/13 Hence,we find x=17/13 and y= -5/13.
  • 1 answers

Sia ? 6 years, 4 months ago

Given polynomial is  f(x) = x- 3x+ x + 1
Let {tex} \alpha{/tex} = (a - b), {tex} \beta{/tex} = a and {tex} \gamma{/tex} = (a + b)
Now, {tex} \alpha + \beta + \gamma{/tex} = {tex} - \frac { ( - 3 ) } { 1 }{/tex}
⇒ (a - b) + a + ( a + b ) = 3
⇒ a - b + a + a+ b = 3
⇒ a + a + a = 3
⇒ 3a = 3
⇒ a = 3/3
⇒ a = 1
Also, {tex} \alpha \beta + \beta y + \gamma \alpha = \frac { 1 } { 1 }{/tex}
⇒ (a - b)a + a (a + b) + (a + b)(a - b) = 1 
⇒ a2 - ab + a2 +ab + a2 - b2 = 1
⇒ 3a2 - b2 = 1 ( ∵ a = 1)
⇒ 3(1)2 - b2 = 1( ∵ a = 1)
⇒ 3 - b2 = 1
⇒ b2 = 2
⇒ b = {tex} \pm \sqrt{2}{/tex}
Hence, a = 1 and b = {tex} \pm \sqrt{2}{/tex}

  • 0 answers
  • 1 answers

Yash Gupta 7 years, 6 months ago

Let the shorter side be x Therefore diagonal =x +60 Longer side = x +30 By using p.th. (Diagonal )(diagonal) = x*x +( x +30) Solve the eqaution and get answer
  • 1 answers

Sia ? 6 years, 4 months ago

By Euclid's division algorithm,
a = bq + r = 4q + r
Take b = 4.
Since, 0 {tex}\leqslant{/tex} r < 4, r = 0,1, 2, 3
{tex} a=4q,4q+1,4q+2 ,4q+3{/tex}
Clearly, a =4q=2(2q) and 

4q+2=2×(2q+1)

So 4q and 4q+2 are even

Therefore 4q + 1, 4q + 3 are odd, as they are proceeding numbers of even numbers 4q and 4q+2.
{tex}\therefore{/tex} Any positive odd integer is of form 4q+1 or  4q+3 .Where q is a positive integer.

  • 1 answers

Sia ? 6 years, 4 months ago

Points are (4, 7) and (0, 7)
Distance  {tex}= \sqrt { ( 0 - 4 ) ^ { 2 } + ( 7 - 7 ) ^ { 2 } }{/tex}
{tex}\sqrt { 4 ^ { 2 } + 0 } = \sqrt { 16 }{/tex} = 4 units

  • 1 answers

Sahil Prreet 7 years, 6 months ago

First divide the remainders 4,5 from respective numbers and then find their hcf ,and that will be ur answer
  • 1 answers

Sia ? 6 years, 4 months ago

Let {tex} \alpha{/tex} and {tex} \frac { 1 } { \alpha }{/tex} be the zeros of (a+ 9)x+ 13x + 6a.
Then, we have
{tex} \alpha \times \frac { 1 } { \alpha } = \frac { 6 a } { a ^ { 2 } + 9 }{/tex}
⇒ 1 = {tex} \frac { 6 a } { a ^ { 2 } + 9 }{/tex}
⇒ a2 + 9 = 6a
⇒ a2 - 6a + 9 = 0
⇒ a2 - 3a - 3a + 9 = 0
⇒ a(a - 3)  - 3(a - 3) = 0
⇒ (a - 3) (a - 3) = 0
⇒ (a - 3)= 0
⇒ a - 3 = 0
⇒ a = 3
So, the value of a in given polynomial is 3.

  • 2 answers

Tejal Mishra 7 years, 6 months ago

Sorry

Tejal Mishra 7 years, 6 months ago

x+y=7 5x+12y=7
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Let n-1 and n be consecutive positive integers,Let P be their product
Then  {tex}\style{font-family:Arial}{\style{font-size:12px}{\mathrm n(\mathrm n-1)=\mathrm n^2-1\;.................(1)}}{/tex}
We know that any positive integers is of the form 2q or 2q + 1, where q is a positive integer
Case I: When n = 2q, then
P=n2 - n = (2q)2 - 2q = 4q2 - 2q = 2q(2q - 1)-----(2)
Case II: When n = 2q + 1, then
P=n2 - n = (2q + 1)2 - (2q + 1)
= 4q2 + 4q + 1 - 2q - 1
= 4q2 + 2q
P = 2q(2q + 1)..........(3)
From (2) and (3) we conclude that the product of n-1 and n is divisible by 2

  • 1 answers

Maneesh Chaudhary 7 years, 6 months ago

Hello lakshita kataria i have your answer
  • 1 answers

Ananya Tyagi 7 years, 6 months ago

(5+2√3)² =5²+(2√3)²+2.2√3 25+12+4√3=37+4√3 That's an irrational number
  • 0 answers
  • 2 answers

Maneesh Chaudhary 7 years, 6 months ago

Hello priya

Maneesh Chaudhary 7 years, 6 months ago

First of all,download the app of ncert solutions,then you will find that here are the books of maths are ncert,r.s agarwal, rd sharma,ncert exampler problems,thus selecting any one of these books,you will get the solutions.ok,if you face any problem be contact again.
  • 4 answers

Priyanshu Kumar 7 years, 6 months ago

29-2+2-5

Sakshi Bisht 7 years, 6 months ago

24

Khushi Sharma 7 years, 6 months ago

24

Sukhpreet Kaur 7 years, 6 months ago

24
  • 1 answers

Happy Kumar 7 years, 6 months ago

1by root 2
  • 1 answers

Sia ? 6 years, 4 months ago

LHS {tex} \frac{{1 + \cos \theta + \sin \theta }}{{1 + \cos \theta - \sin \theta }}{/tex}
Dividing numerator and denominator by cos{tex} \theta {/tex}
{tex}= \frac{{\frac{1}{{\cos \theta }} + \frac{{\cos \theta }}{{\cos \theta }} + \frac{{\sin \theta }}{{\cos \theta }}}}{{\frac{1}{{\cos \theta }} + \frac{{\cos \theta }}{{\cos \theta }} - \frac{{\sin \theta }}{{\cos \theta }}}}{/tex}
{tex}= \frac{{\sec \theta + 1 + \tan \theta }}{{\sec \theta + 1 - \tan \theta }}{/tex}
Multiplying and dividing by {tex} \sec \theta + 1 + \tan \theta {/tex}
{tex}= \frac{{\sec \theta + 1 + \tan \theta }}{{\sec \theta + 1 - \tan \theta }} \times \frac{{\sec \theta + 1 + \tan \theta }}{{\sec \theta + 1 + \tan \theta }}{/tex}
{tex}= \frac{{{{(\sec \theta + 1 + \tan \theta )}^2}}}{{{{(\sec \theta + 1)}^2} - {{\tan }^2}\theta }}{/tex}
{tex}= \frac{{{{\sec }^2}\theta + 1 + {{\tan }^2}\theta + 2\sec \theta + 2\tan \theta + 2\sec \theta \tan \theta }}{{1 + {{\sec }^2}\theta + 2\sec \theta - {{\tan }^2}\theta }}{/tex}
Now, {tex} 1 + {\tan ^2}\theta = {\sec ^2}\theta {/tex}
{tex}= \frac{{2{{\sec }^2}\theta + 2\sec \theta + 2\tan \theta + 2\sec \theta \tan \theta }}{{2 + 2\sec \theta }}{/tex}
{tex} = \frac{{2\left[ {\sec \theta (\sec \theta + 1) + \tan \theta (1 + \sec \theta } \right]}}{{2(1 + \sec \theta )}}{/tex}
{tex} = \frac{{(\sec + \tan \theta )(\sec \theta + 1)}}{{(1 + \sec \theta )}}{/tex}
{tex} = \sec \theta + \tan \theta = \frac{1}{{\cos \theta }} + \frac{{\sin \theta }}{{\cos \theta }}{/tex}
{tex}= \frac{{1 + \sin \theta }}{{\cos \theta }} = RHS{/tex}

  • 1 answers

Sia ? 6 years, 4 months ago

We have,f(x) = 3x2 - x - 4

= 3x- 4x + 3x - 4
= x(3x - 4) + 1(3x - 4)
= (3x - 4) )(x + 1)
{tex}\therefore{/tex} f(x) = 0
{tex}\Rightarrow{/tex} (3x - 4)(x +1) = 0
{tex}\Rightarrow{/tex} 3x - 4 = 0 or x + 1 = 0
{tex}\Rightarrow x = \frac { 4 } { 3 }{/tex} or x = -1
So, the zeros of f(x) are {tex}\frac { 4 } { 3 } \text { and } - 1{/tex}

Now sum of zeros {tex}= \frac { 4 } { 3 } + ( - 1 ) = \frac { 1 } { 3 } = \frac { - ( \text { coefficient of } x ) } { \left( \text { coefficient of } x ^ { 2 } \right) }{/tex}.
And product of zeros {tex}= \frac { 4 } { 3 } \times ( - 1 ) = \frac { - 4 } { 3 } = \frac { \text { constant term } } { \left( \text { coefficient of } x ^ { 2 } \right) }{/tex}

  • 4 answers

Khushi Sharma 7 years, 6 months ago

16

Hemanshu Waghmare 7 years, 6 months ago

Yup the questio is

Om Gupta 7 years, 6 months ago

18

Dream ? 7 years, 6 months ago

The question is incomplete........
  • 1 answers

Ankit Singh 7 years, 6 months ago

Ye bhi nhi aata
  • 2 answers

Sanjeev Kumar 7 years, 6 months ago

X+1=Y+1 1 2x=y+1

Amit Kumar 7 years, 6 months ago

Let 1st no. be x and 2nd no. be y. ATQ, (x-y) =14 ................1 (x sq.- y sq.)= 448 (x+y)(x-y) =448 (x+y)14=448 [from1] (x+y) =32 ..............2 Eliminate equation 1 and 2, we will get the values of x and y.
  • 1 answers

Amitosh Junghare 7 years, 6 months ago

1/4

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App