No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Varun Srivastav 7 years, 6 months ago

Mensuration ,Trigonometary, geomerty Are important BUT YOU SHOULD TAKE WHOLE CHAPTERS AS PAPER PATTERN....

Kajal Kocharekar 7 years, 6 months ago

Trigonometry

Mohsin Ansari 7 years, 6 months ago

Maths
  • 0 answers
  • 1 answers

Yash Ojha 7 years, 6 months ago

Triangle
  • 3 answers

Varun Srivastav 7 years, 6 months ago

LCM×HCF=PRODUCT OF NUMBERS YOUR QUESTION IS WRONG.

Bhavya Choubey 7 years, 6 months ago

We have to find the no. not the LCM.

Priyanka Chaurasiya 7 years, 6 months ago

Lcm+hcf =sum of two numbers
  • 0 answers
  • 1 answers

Priyanka Chaurasiya 7 years, 6 months ago

Which question
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

We do not know whether {tex} \frac { a } { b } < \frac { a + 2 b } { a + b } \text { or, } \frac { a } { b } > \frac { a + 2 b } { a + b }{/tex}.
Therefore, to compare these two numbers, let us compute {tex} \frac { a } { b } - \frac { a + 2 b } { a + b }{/tex}
We have,
{tex} \frac { a } { b } - \frac { a + 2 b } { a + b } = \frac { a ( a + b ) - b ( a + 2 b ) } { b ( a + b ) }{/tex} {tex} = \frac { a ^ { 2 } + a b - a b - 2 b ^ { 2 } } { b ( a + b ) } = \frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) }{/tex}
{tex} \therefore \quad \frac { a } { b } - \frac { a + 2 b } { a + b } > 0{/tex}
{tex} \Rightarrow \quad \frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) } > 0{/tex}
{tex} \Rightarrow{/tex}    a2 - 2b2 > 0
{tex} \Rightarrow{/tex} a2> 2b2
{tex} \Rightarrow \quad a > \sqrt { 2 } b{/tex}
and, {tex} \frac { a } { b } - \frac { a + 2 b } { a + b } < 0{/tex}
{tex} \Rightarrow \quad \frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) } < 0{/tex}   
{tex} \Rightarrow{/tex} a2 - 2b2 < 0
{tex} \Rightarrow{/tex}a2 <2b2
{tex} \Rightarrow \quad a < \sqrt { 2 } b{/tex}
Thus, {tex} \frac { a } { b } > \frac { a + 2 b } { a + b }{/tex}, if {tex}a > \sqrt { 2 b }{/tex} and {tex} \frac { a } { b } < \frac { a + 2 b } { a + b }{/tex}, if {tex} a < \sqrt { 2 } b{/tex}.
So, we have the following cases:
CASE I When {tex} a > \sqrt { 2 } b{/tex}
In this case, we have
{tex} \frac { a } { b } > \frac { a + 2 b } { a + b } \text { i.e., } \frac { a + 2 b } { a + b } < \frac { a } { b }{/tex}
We have to prove that
{tex} \frac { a + 2 b } { a + b } < \sqrt { 2 } < \frac { a } { b }{/tex}
We have,
{tex} a > \sqrt { 2 } b{/tex}
{tex} \Rightarrow{/tex} a2> 2b[Adding a2 on both sides]
{tex} \Rightarrow \quad 2 a ^ { 2 } + 2 b ^ { 2 } > \left( a ^ { 2 } + 2 b ^ { 2 } \right) + 2 b ^ { 2 }{/tex} [Adding 2b2 on both sides]
{tex} \Rightarrow \quad 2 \left( a ^ { 2 } + b ^ { 2 } \right) + 4 a b > a ^ { 2 } + 4 b ^ { 2 } + 4 a b{/tex} [Adding 4ab on both sides]
{tex} \Rightarrow \quad 2 \left( a ^ { 2 } + 2 a b + b ^ { 2 } \right) > a ^ { 2 } + 4 a b + 4 b ^ { 2 }{/tex}
{tex} \Rightarrow \quad 2 ( a + b ) ^ { 2 } > ( a + 2 b ) ^ { 2 }{/tex}
{tex} \Rightarrow \quad \sqrt { 2 } ( a + b ) > a + 2 b{/tex}
{tex} \Rightarrow \quad \sqrt { 2 } > \frac { a + 2 b } { a + b }{/tex}  ........(i)
Again,
{tex} a > \sqrt { 2 } b {/tex}
{tex}\Rightarrow \frac { a } { b } > \sqrt { 2 }{/tex}  .......(ii)
From (i) and (ii), we get
{tex} \frac { a + 2 b } { a + b } < \sqrt { 2 } < \frac { a } { b }{/tex}
CASE II When {tex} a < \sqrt { 2 } b{/tex}
In this case, we have
{tex} \frac { a } { b } < \frac { a + 2 b } { a + b }{/tex}
We have to show that {tex} \frac { a } { b } < \sqrt { 2 } < \frac { a + 2 b } { a + b }{/tex}
We have,
{tex} a < \sqrt { 2 } b{/tex}
{tex} \Rightarrow \quad a ^ { 2 } < 2 b ^ { 2 }{/tex}
{tex} \Rightarrow \quad a ^ { 2 } + a ^ { 2 } < a ^ { 2 } + 2 b ^ { 2 }{/tex} [Adding a2 on both sides]
{tex} \Rightarrow \quad 2 a ^ { 2 } + 2 b ^ { 2 } < a ^ { 2 } + 2 b ^ { 2 }+ 2 b ^ { 2 }{/tex} [Adding 2b2 on both sides]
{tex}\Rightarrow \quad 2 a ^ { 2 } + 2 b ^ { 2 } < a ^ { 2 } + 4 b ^ { 2 }{/tex}
{tex} \Rightarrow \quad 2 a ^ { 2 } + 4 a b + 2 b ^ { 2 } < a ^ { 2 } + 4 a b + 4 b ^ { 2 }{/tex} [Adding 4ab on both sides]
{tex} \Rightarrow \quad 2 ( a + b ) ^ { 2 } < ( a + 2 b ) ^ { 2 }{/tex}
{tex} \Rightarrow \sqrt { 2 } ( a + b ) < a + 2 b{/tex}
{tex} \Rightarrow \quad \sqrt { 2 } < \frac { a + 2 b } { a + b }{/tex} . ...(iii)
{tex} \Rightarrow \quad a < \sqrt { 2 } b \Rightarrow \frac { a } { b } < \sqrt { 2 }{/tex}  ....(iv)
From (iii) and (iv), we get
{tex} \frac { a } { b } < \sqrt { 2 } < \frac { a + 2 b } { a + b }{/tex}
Hence, {tex} \sqrt { 2 }{/tex} lies between {tex} \frac { a } { b }{/tex} and {tex} \frac { a + 2 b } { a + b }{/tex}.

  • 1 answers

Sia ? 6 years, 6 months ago

Given integers are 408 and 1032 where 408 < 1032
By applying Euclid’s division lemma, we get 1032 = 408 {tex}\times{/tex} 2 + 216.
Since the remainder ≠ 0, so apply division lemma again on divisor 408 and remainder 216, we get the relation as
408 = 216 {tex}\times{/tex} 1 + 192.
Since the remainder ≠ 0, so apply division lemma again on divisor 216 and remainder 192
216 = 192 {tex}\times{/tex} 1 + 24.
Since the remainder ≠ 0, so apply division lemma again on divisor 192 and remainder 24 
192 = 24 × 8 + 0.
Now the  remainder has become 0. Therefore, the H.C.F of 408 and 1032 = 24.
Therefore,
24 = 1032m - 408 {tex}\times{/tex} 5
1032m = 24 + 408 {tex}\times{/tex} 5
1032m = 24 + 2040
1032m = 2064  
{tex}m = \frac{{2064}}{{1032}}{/tex}
Therefore, m = 2.

  • 1 answers

Biswajeet Pradhan 7 years, 6 months ago

Euclid's divison algorithm is Dividend = Divisor x Quotient + Remainder or a = b x q + r where, 0 < or = r < b
  • 1 answers

Q Wsb 7 years, 6 months ago

258555
  • 3 answers

Sharmi Mandal 7 years, 6 months ago

But the degree of the polynomial is 3...so the polynomial must have 3 zeros

Prince Kumar 7 years, 6 months ago

X³-1 X³=1 X=³√1=1

Sharmi Mandal 7 years, 6 months ago

Please someone answer it quickly..
  • 1 answers

Sia ? 6 years, 6 months ago

On dividing n by 3, let q be the quotient and r be the remainder.
Then, {tex}n = 3q + r{/tex}, where {tex}0 \leq r < 3{/tex}
{tex}\Rightarrow\;n = 3q + r{/tex} , where r = 0,1 or 2
{tex}\Rightarrow{/tex} {tex}n = 3q \;or \;n = (3q + 1) \;or\; n = (3q + 2){/tex}.
Case I If n = 3q then n is clearly divisible by 3.
Case II If {tex}\;n = (3q + 1)\; {/tex} then {tex} (n + 2)= (3q + 1 + 2) = (3q + 3) = 3(q + 1){/tex}, which is clearly divisible by 3.
In this case, {tex}(n + 2){/tex} is divisible by 3.
Case III If n = {tex}(3q + 2){/tex} then {tex}(n + 1) = (3q + 2 + 1) = (3q + 3) = 3(q + 1){/tex}, which is clearly divisible by 3.
In this case,{tex} (n + 1){/tex} is divisible by 3.
Hence, one and only one out of {tex}n, (n + 1){/tex} and {tex}(n + 2){/tex} is divisible by 3.

  • 1 answers

Kannu Kranti Yadav 7 years, 6 months ago

OXIDATION->it means1.(adding of O2)2.(removal of H2)3.(loss of electrons).Ex-->. C+O2----->CO2,here C is getting oxidised. REDUCTION->it means 1. (removal of O2)2.(adding of H2)3.(adding/gain of electrons).Ex->CO2-->C+O2 ,here CO2 us getting reduced.
  • 1 answers

Kannu Kranti Yadav 7 years, 6 months ago

Yes,because we don't know that how many atoms are there.
  • 1 answers

Chhavi Agarwal 7 years, 6 months ago

Upward perabola means related to value of x and downward means related to y
  • 1 answers

Kannu Kranti Yadav 7 years, 6 months ago

x²+400x-960000 ......................................... here,product=-960000 and sum=400.Factors=-1200 and800 .................. x²-1200x+800x-960000........... ..................... x(x-1200)+800(x-1200)............. .............. (x+800)(x-1200)=0....................... ............... x=-800or+1200
  • 2 answers

Radha Madhavi 7 years, 6 months ago

Let first no.is x Second no 8-x Sum of reciprocals 1/x+1/(8-x)=8/15 Solving x^2-8x+15=0 x^2-3x-5x+15=0 (x-3)(x-5)=0 x=3,x=5

Vaibhav Kohli 7 years, 6 months ago

35
  • 1 answers

Radha Madhavi 7 years, 6 months ago

Length of longest straight line is √(24)^2+(18)^2 Length of the longest line= √900 =30

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App