No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Abhigyan Purohit 7 years, 6 months ago

Cotangent
  • 1 answers

Vidhi Jain 7 years, 6 months ago

let us take on contrary that 3 root 7 is rational. then there exist two co prime numbers a and b such that 3root 7 = a/b => root 7 = a / 7b now LHS is an irrational no. whereas RHs is rational this contradiction has arised due to our wrong assumption in beginning therefore 3 root 7 is an irrational number
  • 1 answers

Susai Raj 7 years, 6 months ago

x and y are odd integers. So they should be of the form x= 2m+1, y= 2n+1 for some integers m and n.
x^2 + y^2 =(2m+1)^2 + (2n+1)^2
=4m^2+4m +1+4n^2+4n+1
=4m^2+4n^2+4m+4n+2
=4(m^2+n^2+m+n) + 2
Which is an even number but not divisible by 4.
  • 1 answers

Susai Raj 7 years, 6 months ago

(tanA+sinA)/(tanA-sinA)
={(sinA/cosA) + sinA} / {(sinA/cosA) -sinA}
=sinA{(1/cosA) + 1} / sinA{(1/cosA)- sinA}
=(1/cosA + 1)/1/cosA - 1)
=(secA+1)/(secA-1).
  • 1 answers

Susai Raj 7 years, 6 months ago

If ax+by+cz=0 and
lx+my+n =0 , then if
a/l is not equal to b/m then the equations are consistent with a unique solution. In this case we will get intersecting lines in their graphical representation.
  • 1 answers

Susai Raj 7 years, 6 months ago

a+b=24.....(1)
a - b=8....(2)
We know that
(a+b)^2 - (a-b)^2 = 4ab
So 24^2 - 8^2 =4ab
ie (24+8)(24-8) =4ab
=> ab = 32×16/4
ie. ab = 128
So the required quadratic polynomial is
x^2-(sum of zeroes)x+ product of zeroes
ie. x^2 -24x +128
Sum of zeroes = -b/a =
-(-24 )/1 = 24
Product of zeroes = c/a
=128/1 = 128.
  • 1 answers

Preyanshu Sinha 7 years, 6 months ago

Solution 1/2+1-2/root3÷ 2/root3+1/2+1 =root3+2root3-2root2/ 2root3. ÷ 2*2+root3+2root3/ 2root3 =root3+2root3-4÷ 4+root3+2root3 =(3root3-4)whole square÷ (3root3)whole square-4square =27+16-24root3÷ 27-16 =43-24rooot3÷ 11
  • 1 answers

Susai Raj 7 years, 6 months ago

625 = 5^4
1125 =3^2 × 5^3
2125= 5^3 × 17
The required LCM =3^2×5^4×17 = 95625
The required HCF =5^3=125
  • 2 answers

Ravina Goyat 7 years, 6 months ago

Let the HCF x and LCM 14x HCF plus LCM equal 600 X + 14 x = 615 x = 6 cm equal 40 HCF equal 40 and LCM equal 5 00 HCF multiply LCM first number multiply second number 40 multiplied 500 equals 28 multiplied second number second number second number equal to multiply 500 / 287 second number is 80

Ravina Goyat 7 years, 6 months ago

Given HCF + LCM=600 One number is 280
  • 2 answers

Rishu Raj 7 years, 6 months ago

d\2=1/4 then u can write it as 4d\2=1 and after this u can write it as (2d)\2=1 or 2d=√1 or 2d=1 now d=1/2 this is the second process i explained ,here d\2means 2 power on d and 4d\2 means 4 multiply d square....

Shiva Yadav Shiva Yadav 7 years, 6 months ago

D=1/2
  • 1 answers

Amr G 7 years, 6 months ago

A polynomial of degree 1 for eg x+ 1 here the highest power of the variable means degree is 1 so it is a linear polynomial
  • 2 answers

Kannu Kranti Yadav 7 years, 6 months ago

Yaar,write ur que properly.

Navjot Kaur 7 years, 6 months ago

please answer quickly
  • 1 answers

Rishu Raj 7 years, 6 months ago

let 5+√3 =a is rational, then √3=a-5(1) we know that if rational is subtracted from rational we get rational as result ,so. from eq (1) irrational = rational ,which is impossible ,therefore our supposition is wrong ,and 5+√3=a is irrational.....
  • 1 answers

Sia ? 6 years, 6 months ago

We have, {tex}\sqrt2x^2 +7x +5\sqrt2 =0{/tex}

{tex}\implies \sqrt2x^2 +2x +5x+5\sqrt2 =0{/tex}

{tex}\implies \sqrt2x (x +\sqrt2) + 5 (x + \sqrt2) = 0{/tex}

{tex}\implies (\sqrt2x+5) (x+\sqrt2) =0{/tex}

{tex}Either\, \sqrt2x+5 =0\, or \,x+\sqrt2 =0{/tex}

{tex}\implies x = {-5 \over \sqrt2},\, -\sqrt2{/tex}

{tex}\therefore x = {-5 \over \sqrt2},\, -\sqrt2{/tex} are the required roots.

  • 1 answers

Amanullah Khan 5 years, 8 months ago

Please answer
  • 2 answers

Rishu Raj 7 years, 6 months ago

Never take math as a big dodge or weight,always take it easy and play with math ,anytime u notice if u are playing with someone he also plays with u ofcourse he is your enemy or friend so if u play with math math will play with u and make itself easy to learn to u .......please take this point seriously u will become genius in math its my experience .....

Krituk Nikhra 7 years, 6 months ago

By concentration and by ur mind.... Take it as a song
  • 1 answers

Krituk Nikhra 7 years, 6 months ago

Only learn sinA, cosA and TanA Than u easily learn cosecA which is resiprocal of sinA, secA resiprocal of cosA and cotA resiprocal of tanA...
  • 1 answers

Rohit Kumar 7 years, 6 months ago

p(x)=3x^2+4x-4 here a=3,b=4 and c=-4 ( by comparison with ax^2+bx+c)
for x=0
p(x)=o
3x^2+4x-4=0
3x^2+6x-2x-4=0
3x(x+2)-2(x+2)=0
(3x-2)(x+2)=0

therefore x=2/3 or x=-2
let,
alpha=2/3
beta=-2


now, alpha+beta= -b/a
2/3-2=-4/3
-4/3=-4/3
similarly,
alpha x beta= c/a
2/3 x -2 = -4/3
-4/3 = -4/3

hence verified
  • 1 answers

Krituk Nikhra 7 years, 6 months ago

R u sure u had written as ques as given
  • 1 answers

Sia ? 6 years, 6 months ago

The given quadratic polynomial is 
f(x) = x2 - 3x - 2
Sum of the zeroes = α + β = 3
Product of the zeroes = αβ = -2
From the question, we have the quadratic polynomial ax2 + bx + c whose zeroes are {tex}\frac{1}{{2\alpha + \beta }} \space and\ \space \frac{1}{{2\beta + \alpha }}{/tex}.
Sum of the zeroes of the new polynomial {tex}= \frac{1}{{2\alpha + \beta }} + \frac{1}{{2\beta + \alpha }}{/tex}
{tex} = \frac{{2\beta + \alpha + 2\alpha + \beta }}{{\left( {2\alpha + \beta } \right)\left( {2\beta + \alpha } \right)}}{/tex}
{tex}= \frac{{3\alpha + 3\beta }}{{2\left( {{\alpha ^2} + \beta^2} \right) + 5\alpha \beta }}{/tex}
{tex} = \frac{{3 \times 3}}{{2\left[ {{{\left( {\alpha + \beta } \right)}^2} - 2\alpha \beta + 5 \times \left( { - 2} \right)} \right]}}{/tex}
{tex}= \frac{9}{{2\left[ {9 - ( - 4)} \right] - 10}}{/tex}
{tex}= \frac{9}{{2\left[ {13} \right] - 10}}{/tex}
{tex} = \frac{9}{{26 - 10}} = \frac{9}{{16}}{/tex}
Also Product of the zeroes {tex}\frac{1}{{2\alpha + \beta }} \space \times\ \space \frac{1}{{2\beta + \alpha }}{/tex}
{tex}= \frac{1}{{\left( {2\alpha + \beta } \right)\left( {2\beta + \alpha } \right)}}{/tex}
{tex}= \frac{1}{{4\alpha \beta + 2{\alpha ^2} + 2{\beta ^2} + \alpha \beta }}{/tex}
{tex} = \frac{1}{{5\alpha \beta + 2\left( {{\alpha ^2} + {\beta ^2}} \right)}}{/tex}
{tex} = \frac{1}{{5\alpha \beta + 2\left( {{{\left( {\alpha + \beta } \right)}^2} - 2\alpha \beta } \right)}}{/tex}
{tex} = \frac{1}{{5 \times \left( { - 2} \right) + 2\left( {{{\left( 3 \right)}^2} - 2 \times \left( { - 2} \right)} \right)}}{/tex}
{tex}= \frac{1}{{ - 10 + 26}} = \frac{1}{{16}}{/tex}
So, the quadratic polynomial is,
x2 - (sum of the zeroes)x + (product of the zeroes)
{tex}= \left( {{x^2} + \frac{9}{{16}}x + \frac{1}{{16}}} \right){/tex}
Hence, the required quadratic polynomial is {tex}\left( x ^ { 2 } + \frac { 9 } { 16 } x + \frac { 1 } { 16 } \right){/tex}.

  • 2 answers

Rajiv Ranjan 7 years, 6 months ago

1 ?????

Sachin Kumar 7 years, 6 months ago

I do not know
  • 1 answers

Jaya Chaudhary 7 years, 6 months ago

The processes which maintain body functions and are necessary for survival are called life processes. The important life processes are nutrition, transportation, metabolism, reproduction, respiration, and excretion.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App