Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Kunal Saini 7 years, 5 months ago
- 1 answers
Posted by Anurag Khobragade 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
We have,
{tex}kx^2 + kx + 1 = -4x^2 - x{/tex}
{tex}\Rightarrow{/tex} {tex}kx^2 + 4x^2 + kx + x + 1 = 0{/tex}
{tex}\Rightarrow{/tex}{tex} (k + 4)x^2 + (k + 1)x + 1 = 0{/tex}
Here, a = k + 4, b = k + 1 and c = 1
{tex}\therefore{/tex} {tex}D = b^2 - 4ac{/tex}
= (k + 1)2 - 4 {tex}\times{/tex} (k + 4) {tex}\times{/tex} (1)
{tex}= k^2 + 1 + 2k - 4k - 16{/tex}
{tex}= k^2 - 2k - 15{/tex}
{tex}\Rightarrow{/tex} {tex}D = k^2 - 2k - 15{/tex}
The given equation will have real and equal roots, if
D = 0
{tex}\Rightarrow{/tex} {tex}k^2 - 2k - 15 = 0{/tex}
{tex}\Rightarrow{/tex}{tex} k^2 - 5k + 3k - 15 = 0{/tex}
{tex}\Rightarrow{/tex} k(k - 5) + 3(k - 5) = 0
{tex}\Rightarrow{/tex} (k - 5)(k + 3) = 0
{tex}\Rightarrow{/tex} k - 5 = 0 or k + 3 = 0
{tex}\Rightarrow{/tex} k = 5 or k = -3
Posted by Varsha Yadav 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Let the ages of A and B be x and y years respectively.
Then, age difference of A and B is 2 years.
{tex}\Rightarrow{/tex}x - y = {tex}\pm{/tex}2
A's father D is twice as old as A and B is twice as old as his sister C.
Then, D's age =2x years. and, C's age {tex}= \frac { y } { 2 }{/tex}years.
Clearly, D is older than C
The age of D and C differ by 40 years.
{tex}\therefore{/tex} {tex}2 x - \frac { y } { 2 } = 40 {/tex}
{tex}\Rightarrow 4 x - y = 80{/tex}
Thus, we have the following two systems of linear equations
x - y =2 ...............(i)
and, 4x - y =80 ...........(ii)
x - y = -2 ............(iii)
and, 4x - y=80 ..................(iv)
Subtracting equation (i) from equation (ii), we get
(x - y) - (4x - y)= 2 - 80
⇒ x - y - 4x + y = -78
⇒ - 3x = - 78
⇒ 3x =78
⇒x =26
Putting x =26 in equation (i), we get
x - y =2
⇒ 26 - y = 2
⇒ y =24
Subtracting equation (iv) from equation (iii), we get
{tex}- 3 x = - 82 {/tex}
{tex}\Rightarrow x = \frac { 82 } { 3 } = 27 \frac { 1 } { 3 }{/tex}
Putting {tex}x = \frac { 82 } { 3 }{/tex}in equation (iii), we get
{tex}y = \frac { 82 } { 3 } + 2 = \frac { 88 } { 3 } = 29 \frac { 1 } { 3 }{/tex}
Hence, A's age =26 years and B's age =24 years
or,
A's age {tex}= 27 \frac { 1 } { 3 }{/tex}Years and B's age {tex}29 \frac { 1 } { 3 }{/tex}years.
Posted by Dodoya Shlok 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Given,

In {tex}\triangle{/tex}OTS,
{tex}OT =OS {/tex}
{tex}\Rightarrow \quad \angle O T S = \angle O S T{/tex} ...(i)
In right {tex}\triangle OTP,{/tex}
{tex}\frac { \mathrm { OT } } { \mathrm { OP } } = \sin \angle \mathrm { TPO }{/tex}
{tex}\Rightarrow \frac { r } { 2 r } = \sin \angle \mathrm { TPO }{/tex}
{tex}\sin \angle \mathrm { TPO } = \frac { 1 } { 2 } \Rightarrow \angle \mathrm { TPO } = 30 ^ { \circ }{/tex}
Similarly {tex}\angle \mathrm { OPS } = 30 ^ { \circ }{/tex}
{tex}\Rightarrow \angle T P S = 30 ^ { \circ } + 30 ^ { \circ } = 60 ^ { \circ }{/tex}
Also {tex}\angle \mathrm { TPS } + \angle \mathrm { SOT } = 180 ^ { \circ }{/tex}
{tex}\Rightarrow \quad \angle \mathrm { SOT } = 120 ^ { \circ }{/tex}
In {tex}\triangle{/tex}SOT,
{tex}\angle \mathrm { SOT } + \angle \mathrm { OTS } + \angle \mathrm { OST } = 180 ^ { \circ }{/tex}
{tex}\Rightarrow 120 ^ { \circ } + 2 \angle \mathrm { OTS } = 180 ^ { \circ }{/tex}
{tex}\Rightarrow \angle \mathrm { OTS } = 30 ^ { \circ }{/tex} ...(ii)
From (i) and (ii)
{tex}\angle \mathrm { OTS } = \angle \mathrm { OST } = 30 ^ { \circ }{/tex}
Posted by Abhijith Praseed 7 years, 5 months ago
- 1 answers
Ramanujan Mondal 7 years, 5 months ago
Posted by Akash Choudhary 7 years, 5 months ago
- 2 answers
Suraj Kumar 7 years, 5 months ago
Kunal Singh 7 years, 5 months ago
Posted by Om Khobragade 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
The given AP is
21,18,15......................,0
Here a=21 and d=18-21= -3 and an=0,n=?
{tex}\Rightarrow{/tex} an = a + (n - 1)d
{tex}\Rightarrow{/tex} 0 = a + (n - 1)d
Now on substitution of value of a and d we get
0 = 21 + (n - 1) (-3)
-21 =(n-1)(-3)
n - 1 = {tex}\frac{{ - 21}}{{ - 3}}{/tex}
n - 1 = 7
Hence n = 8.
Posted by Deepthi J Gowda 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
The greater number of 6 digits is 999999.
LCM of 24, 15, and 36 is 360.
{tex}999999 = 360 \times 2777 + 279{/tex}
Required number is = 999999 - 279 = 999720
Posted by Prerika Lamba 7 years, 5 months ago
- 1 answers
Om Khobragade 7 years, 5 months ago
Posted by Adiya Alexander 7 years, 5 months ago
- 1 answers
Patel Aastha 7 years, 5 months ago
Posted by Bhavyansh Gaur 7 years, 5 months ago
- 0 answers
Posted by Amit Chaudhary 7 years, 5 months ago
- 0 answers
Posted by Shashwat Tripurwar 7 years, 5 months ago
- 1 answers
Posted by Loverpree Singh Lovi 7 years, 5 months ago
- 1 answers
Aryan Kaushik 7 years, 5 months ago
Posted by Abhi Raghuwanshi 7 years, 5 months ago
- 1 answers
Aryan Kaushik 7 years, 5 months ago
Posted by Kshitiz Shukla 7 years, 5 months ago
- 1 answers
Posted by Dhruv Kothari 7 years, 5 months ago
- 0 answers
Posted by Karishma Regon 7 years, 5 months ago
- 0 answers
Posted by Renuka Tiwari 7 years, 5 months ago
- 1 answers
Angel Chaubey 7 years, 5 months ago
Posted by Suraj Gupta 7 years, 5 months ago
- 0 answers
Posted by Krishna Parmar 7 years, 5 months ago
- 0 answers
Posted by Anshita Singh 7 years, 5 months ago
- 1 answers
Posted by Anshita Singh 7 years, 5 months ago
- 0 answers
Posted by Reena Varshneya 7 years, 5 months ago
- 1 answers
Ujjwal Sharma 7 years, 5 months ago
Posted by Samit Singh 7 years, 5 months ago
- 2 answers
Gautam Kumar 7 years, 5 months ago
Posted by Harshit Singhap 7 years, 5 months ago
- 1 answers
Posted by Khalid Ansari Khalid Ansari 7 years, 5 months ago
- 0 answers
Posted by Krishna Sharma 7 years, 5 months ago
- 2 answers
Posted by Shubham Raj 7 years, 5 months ago
- 0 answers
Posted by Kushal Patidar 5 years, 8 months ago
- 1 answers
Ujjwal Sharma 7 years, 5 months ago

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Kunal Saini 7 years, 5 months ago
1Thank You