Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Rohit Borana Borana 7 years, 5 months ago
- 0 answers
Posted by Yashraj Yadav 7 years, 5 months ago
- 0 answers
Posted by Krishna Gupta 7 years, 5 months ago
- 1 answers
Abhishek Kumar 7 years, 5 months ago
Posted by Aarti Kushwah 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
LCM(p,q) = a3b3
and HCF(p,q) = a2b
LCM(p,q) {tex}\times{/tex} HCF(p,q) = a3b3 {tex}\times{/tex} a2b
{tex}\begin{array}{l}\mathrm{LCM}(\mathrm p,\mathrm q)\;\times\mathrm{HCF}(\mathrm p,\mathrm q)\;=\mathrm a^5\mathrm b^4\;-----(1)\\\mathrm{and}\;\mathrm{pq}=\mathrm a^2\mathrm b^3\;\times\mathrm a^3\mathrm b=\mathrm a^5\mathrm b^4\;------(2)\\\mathrm{from}\;\mathrm{eq}^\mathrm n\;(1)\;\mathrm{and}\;(2)\\\mathrm{LCM}(\mathrm p,\mathrm q)\;\times\mathrm{HCF}(\mathrm p,\mathrm q)\;\;=\mathrm{pq}\\\\\end{array}{/tex}
Posted by Suraj Jat 7 years, 5 months ago
- 1 answers
Posted by Lakshay Sharma 7 years, 5 months ago
- 0 answers
Posted by Sujal Singh 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Let {tex} \alpha , \beta , \gamma{/tex} be the zeroes of polynomial f(x) = x3 - 5x2 - 2x + 24 such that {tex} \alpha\beta{/tex} = 12.
{tex} \alpha + \beta + \gamma = - \left( - \frac { 5 } { 1 } \right) = 5{/tex} ................ (i)
{tex} \alpha \beta + \beta \gamma + \gamma \alpha = \frac { - 2 } { 1 } = - 2{/tex}
and, {tex} \alpha \beta \gamma = - \frac { 24 } { 1 } = - 24{/tex}
Putting, {tex} \alpha \beta = 12{/tex} in {tex} \alpha \beta \gamma = - 24{/tex}, we get
{tex} 12 \gamma = - 24{/tex}
{tex} \Rightarrow \gamma = - \frac { 24 } { 12 } = - 2{/tex}
Putting {tex} \gamma= -2{/tex} in eq.(i), we get
{tex} \alpha + \beta - 2 = 5{/tex}
{tex} \Rightarrow \quad \alpha + \beta = 7{/tex}
Now, {tex} ( \alpha - \beta ) ^ { 2 } = ( \alpha + \beta ) ^ { 2 } - 4 \alpha \beta{/tex}
{tex} \Rightarrow \quad ( \alpha - \beta ) ^ { 2 } = 7 ^ { 2 } - 4 \times 12{/tex}
{tex} \Rightarrow \quad ( \alpha - \beta ) ^ { 2 } = 1{/tex}
{tex} \Rightarrow \quad \alpha - \beta = \pm 1{/tex}
Thus, we have
{tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta = 1 {/tex} or, {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= -1{/tex}
CASE I: When {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= 1{/tex}
Solving {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= 1{/tex} , we get
{tex} \alpha = 4{/tex} and {tex}\beta= 3{/tex}
CASE II: When {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= -1{/tex}
Solving {tex} \alpha + \beta= 7{/tex} and {tex} \alpha - \beta= -1{/tex} , we get
{tex} \alpha = 3{/tex} and {tex}\beta= 4{/tex} .
Hence, the zeros of the given polynomial are 3, 4 and - 2 or 4,3 , -2.
Posted by Priya Shah 7 years, 5 months ago
- 1 answers
Posted by Ranjeet Chauhan 7 years, 5 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Yes, you can check the syllabus here : https://mycbseguide.com/cbse-syllabus.html
Posted by Niharika Sharma 7 years, 5 months ago
- 2 answers
Posted by Education All Sub 7 years, 5 months ago
- 0 answers
Posted by Suraj Jat 7 years, 5 months ago
- 1 answers
Posted by P A 5 years, 8 months ago
- 0 answers
Posted by Viki Singh 7 years, 5 months ago
- 1 answers
Posted by Saurabh Singh Saurabh Singh 7 years, 5 months ago
- 1 answers
Posted by Sujal Singh 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
{tex}30 = 2 \times 3 \times 5{/tex}
{tex}{72=8×9=2}^3\times3^2{/tex}
{tex}{432=16×27=2}^4\times3^3{/tex}
Therefore, HCF = 2 {tex}\times{/tex} 3 = 6
LCM {tex}= 2^4 \times 3^3 \times 5 = 2160{/tex}
Posted by Saurabh Singh Saurabh Singh 7 years, 5 months ago
- 1 answers
Posted by Yug Dangi 7 years, 5 months ago
- 0 answers
Posted by Mohd Rizwan 7 years, 5 months ago
- 0 answers
Posted by Manaswi Gawande 7 years, 5 months ago
- 1 answers
Posted by Ruthi Lalawmpuii 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Given: In the figure, ABC and AMP are two right triangles, right angled at B and M respectively,
To prove:
- {tex}\triangle {/tex}ABC {tex} \sim {/tex} {tex}\triangle {/tex}AMP
- {tex}\frac{{CA}}{{PA}} = \frac{{BC}}{{MP}}{/tex}
Proof:
- In {tex}\triangle {/tex}ABC {tex} \sim {/tex} {tex}\triangle {/tex}AMP
{tex}\angle{/tex}ABC = {tex}\angle{/tex}AMP (1) ........ [Each equal to 90o]
{tex}\angle{/tex}BAC={tex}\angle{/tex}MAP (2).........[Common angle]
In view of (1) and (2)
{tex}\triangle {/tex}ABC {tex} \sim {/tex} {tex}\triangle {/tex}AMP ..........AA similarity criterion - {tex}\triangle {/tex}ABC {tex} \sim {/tex} {tex}\triangle {/tex}AMP.........Proved above in(i)
{tex}\therefore {/tex} {tex}\frac{{CA}}{{PA}} = \frac{{BC}}{{MP}}{/tex}.........Corresponding sides of two similar triangles are proportional.
Posted by Suraj Jat 7 years, 5 months ago
- 1 answers
Posted by Ruthi Lalawmpuii 7 years, 5 months ago
- 1 answers
Posted by Ayush Kashyap 7 years, 5 months ago
- 2 answers
A. Tiwari 7 years, 5 months ago

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide