No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Pihu Saini 7 years, 5 months ago

In offline content!!
  • 1 answers

Shiva Yadav Shiva Yadav 7 years, 5 months ago

There will be 1root. X=_10/9
  • 1 answers

Shifa Iram 7 years, 5 months ago

Let the fraction be x/y.According to data 1 is subtracted from the numerator and 8 is added to the denominator. X-1 1 -----=------ Y 3 3 (x-1)y 3x-y=3-(1) X ------=3 Y-8 4x=y+8 4x-y=8-(2) 3x-y=3 4x-y=8 (-)(+)(-) ------------ -1=-5 X=5 Substitute the value of x in equation (1) 3x-y=3 3×5-y=3 15-y=3 -y=3-15 -y=-12 y=12 The fraction is 5/12
  • 3 answers

Prashant Chaudhary 7 years, 5 months ago

Anyone online here??????????

Prashant Chaudhary 7 years, 5 months ago

From where are you???

Prashant Chaudhary 7 years, 5 months ago

Hiiii
  • 5 answers

Shailesh Harsana 7 years, 5 months ago

ok

Bipasha Bakshi 7 years, 5 months ago

Hello Aarohi

Arohi . 7 years, 5 months ago

Good?☺

Prashant Chaudhary 7 years, 5 months ago

Hlo

Kaira Goenka 7 years, 5 months ago

I am new in my cbse guide
  • 1 answers

Arohi . 7 years, 5 months ago

What do you want to say?????? Write properly please?
  • 1 answers

Sia ? 6 years, 6 months ago

Given a6 = 12
{tex}\Rightarrow{/tex} a + (6 - 1)d = 12
{tex}\Rightarrow{/tex} a + 5d = 12 ............(i)
and, a8 = 22
{tex}\Rightarrow{/tex} a + (8 - 1)d = 22
{tex}\Rightarrow{/tex} a + 7d = 22 ............(ii)
Subtracting equation (i) from (ii), we get
(a + 7d) - (a + 5d ) = 22 - 12
{tex}\Rightarrow{/tex} a + 7d - a - 5d = 10
{tex}\Rightarrow{/tex}2d - 10
{tex}\Rightarrow \quad d = \frac { 10 } { 2 } = 5{/tex}
Using value of d in equation (i), we get
a + 5 {tex}\times{/tex} 5 = 12
{tex}\Rightarrow{/tex} a = 12 - 25 = -13
nth term(an) = a + (n - 1)a
= -13 + (n - 1)(5)
= 5n - 18

  • 2 answers

Shubham Achary 7 years, 5 months ago

Or n=? ? means 1

Shubham Achary 7 years, 5 months ago

N=1
  • 2 answers

Rahul Yadav 7 years, 5 months ago

Because after 5x., - 1is come Then the answer is 1/6&-1

Rahul Yadav 7 years, 5 months ago

!your questions is wrong
  • 8 answers

Rahul Yadav 7 years, 5 months ago

Ji, vahi aryabhatta Jiski phle kisi ne ni suni Phir marne ke baad nobel prize diya

Prachi Chandila 7 years, 5 months ago

0 was invented by the indian mathematician Aryabhatta.

Jahnvi Sharma 7 years, 5 months ago

0 WAS INVENTED BY A MATHEMATICIAN ARYABHATTA

Mumaiz Peer 7 years, 5 months ago

Aryabhatta

Shamsiya Zehra 7 years, 5 months ago

Aryabhatta

Varsha Yadav 7 years, 5 months ago

Aryabhatta

Siddharth Galange 7 years, 5 months ago

Aryabhatta

Diya Gautam 7 years, 5 months ago

Aryabhatt
  • 0 answers
  • 0 answers
  • 1 answers

Aktarul Islam 7 years, 5 months ago

0° 30 45 60 90 sin root0 root1 root2 root3 root4 Dividing all numbers by 2= sin 0÷2 1÷2 root2÷2 root3÷2 2÷2 0 1/2 1/root2 root3/2 1 Understood you fool!!
  • 2 answers

Prachi Chandila 7 years, 5 months ago

But 1+2=3 not 4

Pari Wagh 7 years, 5 months ago

The question seems to be wrong
  • 0 answers
  • 4 answers

Mumaiz Peer 7 years, 5 months ago

2

Aktarul Islam 7 years, 5 months ago

Ans = 1

Shiva Yadav Shiva Yadav 7 years, 5 months ago

Sin90=Sin60Cos30+Sin30Cos60 Sin90=1

Sai Darshan 7 years, 5 months ago

sin(90_60) sin30+sin30sin(90_60) sin30sin30+sin30sin30 =0
  • 1 answers

Sia ? 6 years, 6 months ago

According to question the given system of equations are
3x + y = 1.......(1)
and  kx + 2y = 5..........(2)

Since we know that,
The given equations are of the form
a1x + b1y + c1= 0 and
a2x + b2y + c2 = 0
has a unique solution if {tex}\frac { a _ { 1 } } { a _ { 2 } } \neq \frac { b _ { 1 } } { b _ { 2 } }{/tex}
Thus,  {tex}\frac { 3 } { k } \neq \frac { 1 } { 2 } \Rightarrow k \neq 6{/tex}
Thus, k can take any real values except 6

  • 0 answers
  • 1 answers

Shubh Pyasi 7 years, 5 months ago

X+y=3 X=5 In place of x we can take 5then 5+y=3 Y=3-5 Y=-2
  • 1 answers

Sia ? 6 years, 6 months ago

The given system of equations is
{tex}\frac{4}{x} + 5y = 7{/tex} ....(1)
{tex}\frac{3}{x} + 4y = 5{/tex} .....(2)
Put {tex}\frac{1}{x} = X{/tex} ....(3)
Then equations (1) and (2) can be rewritten as
4X + 5y = 7 ....(4)
3X + 4y = 5 .....(5)
{tex}\Rightarrow{/tex} 4X + 5y - 7 = 0 ....(6)
3X + 4y - 5 = 0 .....(7)

Then,
{tex}\frac{X}{{(5)( - 5) - ( 4)( - 7)}} = \frac{y}{{( - 7)(3) - ( - 5)(4)}}{/tex} {tex}= \frac{1}{{(4)(4) - (3)(5)}}{/tex}
{tex}\Rightarrow \;\frac{X}{{ - 25 + 28}} = \frac{y}{{ - 21 + 20}} = \frac{1}{{16 - 15}}{/tex}
{tex}\Rightarrow \;\frac{X}{3} = \frac{y}{-1} = \frac{1}{1}{/tex}
{tex}\Rightarrow{/tex} X = 3 and y = -1
{tex} \Rightarrow \;\frac{1}{x} = 3{/tex} and y = -1 ....using (3)
{tex}\Rightarrow \;x = \frac{1}{3}{/tex} and y = -1
Hence, the solution of the given system of equations is
{tex}x = \frac{1}{3}{/tex}, y = -1
Verification : Substituting {tex}x = \frac{1}{3}{/tex}, y = -1,
We find that both the equations (1) and (2) are satisfied as shown below
{tex}\frac{4}{x} + 5y = \frac{4}{{\left( {\frac{1}{3}} \right)}} + 5( - 1) = 12 - 5 = 7{/tex}
{tex}\frac{3}{x} + 4y = \frac{3}{{\left( {\frac{1}{3}} \right)}} + 4( - 1) = 9 - 4 = 5{/tex}
Hence, the solution of the given system of equations is {tex}x = \frac{1}{3}{/tex}, y = -1

  • 4 answers

Prachi Chandila 7 years, 5 months ago

Yes

Sai Darshan 7 years, 5 months ago

s

Arohi . 7 years, 5 months ago

Yes buddy?

Alpna Suthar 7 years, 5 months ago

Yes
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App