No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Lovely Boy 7 years, 4 months ago

b^2+c^2=2(m^2+d^2)
  • 3 answers

Kannu Kranti Yadav 7 years, 4 months ago

Ya it's one of the tricks.

Shikhar Maheshwari 7 years, 4 months ago

Take 0 1 2 3 4 divide them by 4 and then square root all of them. The values of sin0,30,45,60,90 then cos will be reverse of this and rest of the values can be calculated by using identities

Kannu Kranti Yadav 7 years, 4 months ago

There is a easy trick for it but sorry it can't be explained here.
  • 1 answers

Sanju Yadav 7 years, 4 months ago

1-sinA. 1-sinA/1+sinA. 1-sinA = RESIPROCAL1-SIN2A/1-SIN2A=REMOVE SQURE ROOT 1+SINA/1-SINA=1+sina/ cosa
  • 1 answers

Subham Subhrajit Samal 5 years, 8 months ago

2.3 exercise or what
  • 2 answers

Pragya . 7 years, 4 months ago

sry sry k = - 3/4

Pragya . 7 years, 4 months ago

k = -5/4
  • 2 answers

Pragya . 7 years, 4 months ago

4th term is 0. i.e., a+3d=0 therefore a=-3d 25th term is a+24d putting the value of a in 25th term = -3d+24d = 21d and, 11th term is a+10d putting the value of a in 11th term = -3d+10d = 7d 21d=3(7d) 25th term = 3 of 11th term hence proved.....

Shashank Mishra 7 years, 4 months ago

a+3d=0 a= -3d a25=a+24d=3(a11=a+10d) Put a=-3d -3d+24d=3(-3d+10d) 21d=3(7d) 21d=21d
  • 1 answers

Sia ? 6 years, 5 months ago

It is given that the gap between two consecutive rungs is 25 cm and the top and bottom rungs are 2.5 metre i.e., 250 cm apart.
{tex}\therefore{/tex}  Number of rungs = {tex}\frac { 250 } { 25 } {/tex}+ 1 =  10 + 1 = 11.
It is given that the rungs are decreasing uniformly in length from 45 cm at the bottom to 25 cm at the top.
Therefore, lengths of the rungs form an A.P. with first term a = 45 cm and 11th term l = 25 cm. n = 11
{tex}\therefore{/tex}  Length of the wood required for rungs = Sum of 11 terms of an A.P. with first term 45 cm and last term is 25 cm
{tex}= \frac { 11 } { 2 }{/tex} ( 45 + 25 ) cm {tex}\left[ \because S _ { n } = \frac { n } { 2 } ( a + l ) \right]{/tex}
{tex}= \frac { 11 } { 2 }{/tex}(70) cm
= 11 (35) cm
= 385 cm
Length of the wood required for rungs = {tex}\frac{385}{100}{/tex} = 3.85 metres ({tex}\because{/tex}100 cm = 1 m)
The length of the wood required for the rungs is 3.85 metres.

  • 1 answers

Harleen Narula 7 years, 4 months ago

I'm not sure about this answer x2 +px +45 = 144 x2 +px +45 - 144 x2+ px- 99 b-4ac (px)2 - 4*x2*(-99) + 396x2 p2x2 = -396 x2 p2 = -396 x2 / x2 p2 = root - 396 . If my answer is correct so plz tell me Thank you.
  • 1 answers

Shivam Patel 7 years, 4 months ago

What is to be find out??
  • 1 answers

Aashi Pandey 7 years, 4 months ago

X=2/3. X=-3 3x-2=0. X+3=0 (3x-2)(x+3) 3x2+9x-2x-6 3x2+7x-6 So as we can see that on comparing both equation we get that A=3 B=-6
  • 1 answers

Sia ? 6 years, 5 months ago

Let the number be (3q + r)
{tex}n = 3 q + r \quad 0 \leq r < 3{/tex}
{tex}\text { or } 3 q , 3 q + 1,3 q + 2{/tex}
{tex}\text { If } n = 3 q \text { then, numbers are } 3 q , ( 3 q + 1 ) , ( 3 q + 2 ){/tex}
{tex}3 q \text { is divisible by } 3{/tex}.
{tex}\text { If } n = 3 q + 1 \text { then, numbers are } ( 3 q + 1 ) , ( 3 q + 3 ) , ( 3 q + 4 ){/tex}
{tex}( 3 q + 3 ) \text { is divisible by } 3{/tex}.
{tex}\text { If } n = 3 q + 2 \text { then, numbers are } ( 3 q + 2 ) , ( 3 q + 4 ) , ( 3 q + 6 ){/tex}
{tex}( 3 q + 6 ) \text { is divisible by } 3{/tex}.
{tex}\therefore \text { out of } n , ( n + 2 ) \text { and } ( n + 4 ) \text { only one is divisible by } 3{/tex}.

  • 1 answers

Sia ? 6 years, 4 months ago

According to the question, {tex}\triangle ABC {/tex} is an equilateral triangle.
In {tex}\triangle{/tex}ABD, using Pythagoras theorem,

{tex}\Rightarrow{/tex} AB2 = AD2 + BD2
{tex}\Rightarrow{/tex} BC2 = AD2 + BD2, (as AB = BC = CA)
{tex}\Rightarrow{/tex} (2 BD)2 = AD2 + BD2, (perpendicular is the median in an equilateral triangle)
{tex}\Rightarrow{/tex} 4BD2 - BD2 = AD2
{tex}\therefore{/tex} 3BD2 = AD2

  • 3 answers

Elsa B 7 years, 4 months ago

They are as same as other questions in chapters so it is not important to solve them.?

Bharat Singh 7 years, 4 months ago

But it is given in book that part is not for examination point of view

Aarya Rajawat 7 years, 4 months ago

Yes they are likely to come in board exams
  • 1 answers

Sia ? 6 years, 4 months ago

Let A(6, -1) and B(2,3) be the given point and P(x,y) be the required point.

Since point P is equidistant from points A and B,therefore,
PA = PB {tex}\Rightarrow{/tex} (PA)2 = (PB)2
{tex}\Rightarrow{/tex}(x - 6)2 + (y + 1)2 = (2 - x)2 + (3 - y)2
{tex}\Rightarrow{/tex} 36 + x2 - 12x + y2 + 1 +2y = 4 + x2 - 4x + 9 + y2 - 6y
{tex}\Rightarrow{/tex} -12x + 4x + 2y + 6y = 4 + 9 - 1 - 36
{tex}\Rightarrow{/tex} -8x + 8y = -24
-8 (x - y)=-24
{tex}\Rightarrow{/tex} x - y = 3
Hence, x - y = 3

  • 1 answers

Sia ? 6 years, 5 months ago

Given:-In fig., {tex}\Delta{/tex}ABC D is the mid-point of BC and E is the mid-point of AD.


To prove:- BE : EX = 3 : 1
Construction: Through D, draw DF parallel to BX.
Proof:- In {tex}\Delta{/tex}AEX and {tex}\Delta{/tex}ADF
{tex}\angle EAX = \angle DAF{/tex} [Common]
{tex}\angle AXE = \angle AFD{/tex} [Corresponding angles]
Then, {tex}\Delta{/tex}AEX ~ {tex}\Delta{/tex}ADF [By AA similarity]
{tex}\therefore \frac{{EX}}{{DF}} = \frac{{AE}}{{AD}}{/tex} [Corresponding parts of similar {tex}Triangle{/tex}are proportional]
{tex}\Rightarrow \frac{{EX}}{{DF}} = \frac{{AE}}{{2AE}}{/tex} [AE = ED given]
{tex}\Rightarrow{/tex} DF = 2EX ....(i)
In {tex}\Delta{/tex}CDF ~ {tex}\Delta{/tex}CBX
{tex}\angle C = \angle C{/tex} [Common]
{tex}\angle CDF = \angle CBX{/tex} [Corresponding angles]
Then, {tex}\Delta{/tex}CDF ~ {tex}\Delta{/tex}CBX [By AA similarity] 

Therefore ,{tex} \frac{{CD}}{{CB}} = \frac{{DF}}{{BX}}{/tex} [Corresponding parts of similar {tex}\Delta{/tex}are proportional]
{tex}\Rightarrow \frac{1}{2} = \frac{{DF}}{{BE + EX}}{/tex} [BD = DC given]
{tex}\Rightarrow{/tex} BE + EX = 2DF
{tex}\Rightarrow{/tex} BE + EX = 4EX [By using (i)]
{tex}\Rightarrow{/tex} BE = 4EX - EX
{tex}\Rightarrow{/tex} BE = 3EX{tex}{/tex}
{tex}\Rightarrow \frac{{BE}}{{EX}} = \frac{3}{1}.{/tex}

  • 1 answers

Yousuf Raza 7 years, 4 months ago

By taking LCM
  • 1 answers

Sia ? 6 years, 5 months ago

Let n be an arbitrary positive integer.
On dividing n by 3, let q be the quotient and r be the remainder.
Then, by Euclid's division lemma, we have
n = 3q + r, where {tex}0 \leq r < 3{/tex}.
The possibilities of remainder = 0,1 or 2
n2 = (3q + r)2 [∵ (a + b) 2 = a2 + 2ab + b2]
{tex}\therefore{/tex} n2 = 9q+ r+ 6qr ... ....(i), where {tex}0 \leq r < 3{/tex}.
Case I When r = 0.
Putting r = 0 in (i), we get
n2 = 9q2
= 3(3q2)
n2 =  3m, where m = 3q2 is an integer.
Case II When r = 1.
Putting r = 1 in (i), we get
n2 = (9q2 + 1 + 6 q)
= 3(3q+ 2q) + 1
n2=  3 m + 1, where m = (3q2 + 2q) is an integer.
Case lll When r = 2.
Putting r = 2 in (i), we get
n2 = (9q+ 4 + 12q)
= 3(3q2 + 4q + 1) + 1
n2= 3m + 1, where m = (3q2 + 4q + 1) is an integer.
From all the above cases it is clear that the square of any positive integer is of the form 3m or (3m + 1) for some integer m.

  • 2 answers

Durga Verma 7 years, 4 months ago

???

The Devil Prince 7 years, 4 months ago

What. to do???
  • 4 answers

Muskan Divakar 7 years, 4 months ago

But mam/ sir you didn't give me My answer please i need this answer

Sri Kumari 7 years, 4 months ago

Okkk.. mre log gd night

Sri Kumari 5 years, 8 months ago

Koi jinda bhi h ya nhi

Sri Kumari 5 years, 8 months ago

By the help of trick
  • 3 answers

Vaishnavi Vaishnavi 7 years, 4 months ago

2

Yogita Chhabra 7 years, 4 months ago

2

Raiss Siddiqui 7 years, 4 months ago

2
  • 0 answers
  • 1 answers

Yogita Chhabra 7 years, 4 months ago

x=a ,y=b
  • 1 answers

Sia ? 6 years, 4 months ago

Let A(-2, -3) and B(5, 6) be the given points.

  1. Suppose x-axis divides AB in the ratio k:1 at point P
    Then, the coordinates of the point of division are
    {tex}P \left[ \frac { 5 k - 2 } { k + 1 } , \frac { 6 k - 3 } { k + 1 } \right]{/tex}
    Since P lies on x-axis, and y-coordinates of every point on x-axis is zero.
    {tex}\therefore \quad \frac { 6 k - 3 } { k + 1 } = 0{/tex}
    {tex}\Rightarrow{/tex} 6k - 3=0
    {tex}\Rightarrow{/tex} 6k = 3
    {tex}\Rightarrow{/tex} {tex}k = \frac { 3 } { 6 } \Rightarrow k = \frac { 1 } { 2 }{/tex}
    Hence, the required ratio is 1:2.
    Putting {tex}K = \frac { 1 } { 2 }{/tex}in the coordinates of P.
    We find that its coordinates are {tex}\left( \frac { 1 } { 3 } , 0 \right).{/tex}
  2. Suppose y-axis divides AB in the ratio k:1 at point Q.
    Then, the coordinates of the point of division are
    {tex}Q \left[ \frac { 5 k - 2 } { k + 1 } , \frac { 6 k - 3 } { k + 1 } \right]{/tex}
    Since, Q lies on y-axis, and x-coordinates of every point on y-axis is zero.
    {tex}\therefore \quad \frac { 5 k - 2 } { k + 1 } = 0{/tex}
    {tex}\Rightarrow{/tex} 5k - 2 = 0​​​​​​​
    {tex}\Rightarrow \quad k = \frac { 2 } { 5 }{/tex}
    Hence, the required ratio is {tex}\frac { 2 } { 5 } : 1 = 2 : 5{/tex}
    Putting {tex}K = \frac { 2 } { 5 }{/tex}in the coordinates of Q.
    We find that the coordinates are {tex}\left( 0 , \frac { - 3 } { 7 } \right){/tex}​​​​​​​

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App