No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Rashmi Bajpayee 8 years, 4 months ago

{tex}{{5 + 2\sqrt 3 } \over {7 + 4\sqrt 3 }} = a - b\sqrt 3 {/tex}

=>     {tex}{{5 + 2\sqrt 3 } \over {7 + 4\sqrt 3 }} \times {{7 - 4\sqrt 3 } \over {7 - 4\sqrt 3 }} = a - b\sqrt 3 {/tex}

=>     {tex}{{35 - 20\sqrt 3 + 14\sqrt 3 - 24} \over {49 - 48}} = a - b\sqrt 3 {/tex}

=>     {tex}11 - 6\sqrt 3 = a - b\sqrt 3 {/tex}

On comparing, we get

{tex}a = 11,b = - 6{/tex}

  • 1 answers

Soumya Ghoshal 8 years, 4 months ago

 

{tex}​​​​​​​x^3-1/x^3=(x-1/x)^3+3×x×1/x(x-1/x){/tex}

   or,{tex}14= a^3+3a where x-1/x=a{/tex}

   or,{tex}a^3+3a-14=0{/tex}

or,{tex}a³-2a²+2a²-4a+7a-14=0{/tex}

or,{tex}a²(a-2)+2a(a-2)+7(a-2)=0{/tex}

or,{tex}(a-2)(a²+2a+7)=0{/tex}

Then,{tex}a=2{/tex}

So,{tex} x-1/x=2{/tex}

1
  • 0 answers
  • 1 answers

Dharmendra Kumar 8 years, 4 months ago

No such triangle is possible because the sum of angles of a triangle is 180°.

Here anlge A+angle B+angleC=50+130+40=220>180.

  • 0 answers
  • 0 answers
  • 1 answers

Hans Raj 8 years, 4 months ago

Technically invented by many cultures around the world ,  Indians , Greeks, chinese , Ancient Roman used first math , i think Aristotle invented math but before him many used counting things e,g Albert Einstein

 whereas Al-Khwarizmi is considered as father of Algebra

2+1
  • 0 answers
  • 2 answers

Hans Raj 8 years, 4 months ago

({tex}{60 \over 1.70}{/tex}) x{tex}1.70{/tex}

{tex}{60 \over 1.70}{/tex} x {tex}1.70{/tex}

= 60

Prakash Kumar Shrivastava 8 years, 4 months ago

60÷1.70×1.70 = 60
  • 1 answers

Poulami Dasgupta 8 years, 4 months ago

It should be angles

the space (usually measured in degrees) between two intersecting lines or surfaces at or close to the point where they meet.

  • 3 answers

Hans Raj 8 years, 4 months ago

The abscissa  is the x or horizontal coordinae  and  the ordinate is the  y or  vertical co-ordinate 

the horizontal x and vertical y axes on the Cartisian plane are perpendiculr to each other and they intersect at the point of origin whose co-ordinate is always at (0 , 0)

Abscissa is the x value and ordinate is the y value

the vertical axis of a graph is known as ordinate  while horizontal axis of a graph is known as Abscissa  

therefore while talking about a point (x , y ) on the graph , we refer to x value as the Abscissa and y value as the ordinate

Rahul Rajput 8 years, 4 months ago

Co-ordinate is the value of y Aabsica is the value of x

Poulami Dasgupta 8 years, 4 months ago

Co-ordinate means the x axis value and y axis value written together like(x,y)

Abscissa is the value of x-coordinate

  • 4 answers

Hans Raj 8 years, 4 months ago

k = 8 - 2 /8

   = 8 -  1/4 ( by using BODMAS  rule i.e first solve D and then S )

   = (32 - 1) / 4

k = 31/4

k = 7.75

Hans Raj 8 years, 4 months ago

k = 8 - 2 /8

   = 8 -  1/4

   = (32 - 1) / 4

k = 31/4

k = 7.75

Yash Shukla 8 years, 4 months ago

I think! The value of k is 4 by applied bodmas

Ankit Upadhyay 8 years, 4 months ago

I am not sure
  • 1 answers

Pratibha Behl 8 years, 4 months ago

Given:- x+y=w+z Prove:- AOB is a line Proof:- x+y =w+z x+y+w+z =360°{ Complete Angle} 2x + 2y = 360° {•.• x + y = w + z} 2(x + y)= =360° x + y =360°÷2 x+ + y = 180° Hence,AOB is a line
  • 0 answers
  • 0 answers
  • 1 answers

Hans Raj 8 years, 4 months ago

assuming that 30a=6b = 5c is given

then divide by 30 throughout

a = b/5=c/6

a;b;c = 1;5;6

1x + 5x + 6x = 180

12 x = 180

x = 15

a= 15

b = 75

c = 90

2+3
  • 0 answers
  • 1 answers

Hans Raj 5 years, 6 months ago

semi-perimeter = s =35 + 54 + 61/2=150/2= 75

Area= {tex} \sqrt{s(s - a) (s - b) (s - c)}{/tex} Heron's formula

       = {tex}\sqrt75({75 - 35)(75 - 54)(75 - 61)}{/tex}

      = {tex} \sqrt{75(40)(21)(14)}{/tex}

      = {tex} \sqrt{}{/tex} 25x3x5x8x3x7x7x2

      = {tex} \sqrt{}{/tex} 52x32x72x42x5

     = 5x3x7x4x {tex} \sqrt{}{/tex}5

    = 420 {tex} \sqrt{5}{/tex} cm2

  • 1 answers

Rashmi Bajpayee 8 years, 4 months ago

{tex}{\left( {a + b} \right)^2} = 2{a^2} + 2{b^2}{/tex}

=>     {tex}{a^2} + {b^2} + 2ab = 2{a^2} + 2{b^2}{/tex}

=>     {tex}2ab = {a^2} + {b^2}{/tex}

=>     {tex}{a^2} + {b^2} - 2ab = 0{/tex}

=>     {tex}{\left( {a - b} \right)^2} = 0{/tex}

=>     {tex}a-b=0{/tex}

=>     {tex}a=b{/tex}

Hence proved

  • 0 answers
  • 0 answers
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App