No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Maneesh R.K 4 years, 4 months ago

2.111 2.112 2.113 2.114 2.115 2.116 2.117 2.118 2.119 2.120 2.121 2.122 2.123 2.124 2.125 2.126 2.150

Sachin Negi 4 years, 4 months ago

2.1/1× 17/17 and 2.2/1×17/17
  • 2 answers

Harjot Singh 4 years, 4 months ago

The data we collect ourself

Sachin Negi 4 years, 4 months ago

Primary data also called internal data
  • 0 answers
  • 2 answers

Himanshi Goyal 4 years, 3 months ago

Chapter 1 Chapter 3 Chapter 6 Chapter 7 Chapter 12 Chapter 14

Kanchan Gadwal 4 years, 4 months ago

Chapter 1 , 3, 4,6,7,12,14
  • 1 answers

Laya Varshini.P ... 4 years, 4 months ago

1
  • 3 answers

Himanshi Goyal 4 years, 3 months ago

12.5

Laya Varshini.P ... 4 years, 4 months ago

12.5

Anak Yadav 4 years, 4 months ago

Answer is 12.5
  • 3 answers

Amulya Sahu 4 years, 4 months ago

sare padh l9

Huda Khan 4 years, 4 months ago

7 bhi bht important h

Sujeet Roy 4 years, 4 months ago

1 , 3 , 4 , 6 , 7 , 12 , 14 syllabus he aur 1 , 6 , 12 , 3 padhke jha
  • 2 answers

Vanshika Agarwal 4 years, 4 months ago

Either the question will be ABCD is a rhombus and p, q ,r and s are the mid-points of the sides AB,BC, CD and DA respectively . Show that the quadrilateral PQRS is a rectangle. Either it will be ABCD is a rectangle and p, q ,r and s are the mid-points of the sides AB,BC, CD and DA respectively . Show that the quadrilateral PQRS is a rhombus.

Vanshika Agarwal 4 years, 4 months ago

Ur question is wrong
  • 3 answers

Mahi Sharma 4 years, 3 months ago

In figure 6.31 if AB is parallel to CD,Angle APQ = 50° and angle PRD=127° Find x and y

Vanshika Agarwal 4 years, 4 months ago

NCERT BOOK?

Sia ? 4 years, 4 months ago

Please write full question. 

  • 2 answers

Vanshika Agarwal 4 years, 4 months ago

Plz complete your question

Sia ? 4 years, 4 months ago

Complete your question.

  • 4 answers

Vandana Yashu 4 years, 4 months ago

Given:AC=BD----1 AB bisects angle A Therefore angle BAC =angle BAD----2 In ∆ABC and ∆ABD AC=AB(by equation 1) Angle BAC=angle BAD (by equation 2) AB=AB (common) Therefore by SAS axiom ∆ABC~∆ABD By CPCT BC=BD

Vandana Yashu 4 years, 4 months ago

AC =BD and AB bisects angle A .Show that ∆ ACB ~∆ABD ,what can you say about BC and BD?

Vanshika Agarwal 4 years, 4 months ago

Reason- How a triangle can be ABCD?

Vanshika Agarwal 4 years, 4 months ago

Ur question is wrong
  • 4 answers

Shubham Kumar 4 years, 4 months ago

2√2

Vanshika Agarwal 4 years, 4 months ago

Answer-3

Utkarsh Agarwal 4 years, 4 months ago

x² = 2 then x ³ =2√2 EXPLANATION : Let the no.'x' be √2 Now when you put the value of X in the first eq. you will get √2 *2 =2 Now put this value of X in the second eq. you will get √2*√2*√2 = 2√2

Bhagya Singla 4 years, 4 months ago

2x=2 x=2/2 x=1 Then, 3x Put (x=1) 3(1)= 3
  • 3 answers

Laya Varshini.P ... 4 years, 4 months ago

0.41

Aditya Pal 4 years, 4 months ago

O

Jeetesh Prasad 4 years, 4 months ago

√2+1
  • 0 answers
  • 1 answers

Sia ? 4 years, 4 months ago

Given: A square ABCD.

To Prove : (i) AC = BD and (ii) Diagonals bisect each other at right angles.
Proof :

  1. In {tex}\triangle{/tex}ADB and {tex}\triangle{/tex}BCA, we have
    AD = BC ...[As sides of a square are equal]
    {tex}\angle{/tex}BAD = {tex}\angle{/tex}ABC ...[All interior angles are of 90o]
    AB = BA ...[Common]
    {tex}\triangle{/tex}ADB {tex}\cong{/tex} {tex}\triangle{/tex}BCA ...[By SAS rule]
    AC = BD ...[c.p.c.t.]
  2. Now in {tex}\triangle{/tex}AOB and {tex}\triangle{/tex}COD, we have
    AB = CD ...[Sides of a square]
    {tex}\angle{/tex}AOB = {tex}\angle{/tex}COD ...[Vertically opp. angles]
    {tex}\angle{/tex}OBA = {tex}\angle{/tex}ODC ...[Alternate interior angles are equal]
    {tex}\triangle{/tex}AOB {tex}\cong{/tex} {tex}\triangle{/tex}COD ...[By ASA rule]
    OA = OC and OB = OD ...[c.p.c.t.] ...(1)
    Now consider {tex}\triangle{/tex}s AOD and COD.
    AD = CD ...[Sides of square]
    OA = OC ...[As proved above]
    OD = OD ...[Common]
    {tex}\triangle{/tex}AOD {tex}\cong{/tex} {tex}\triangle{/tex}COD ...[By SSS rule]
    {tex}\angle{/tex}AOD = {tex}\angle{/tex}COD ...[c.p.c.t.]
    But {tex}\angle{/tex}AOD + {tex}\angle{/tex}COD = 180° ...[linear pair]
    or {tex}\angle{/tex}AOD + {tex}\angle{/tex}AOD = 180° ...[As {tex}\angle{/tex}AOD = {tex}\angle{/tex}COD]
    or 2{tex}\angle{/tex}AOD = 180° {tex}\therefore{/tex} {tex}\angle{/tex}AOD = 90° ...(2)
    From equation (1) and (2) it is clear that diagonals of a square bisect each other at right angles.
  • 1 answers

Sia ? 4 years, 4 months ago

To find the area of a rectangle, multiply its height by its width. For a square you only need to find the length of one of the sides (as each side is the same length) and then multiply this by itself to find the area. This is the same as saying length2 or length squared.

  • 1 answers

Laya Varshini.P ... 4 years, 4 months ago

224.49
  • 2 answers

Bhagya Singla 4 years, 4 months ago

Maths is everday life.

Ajeet Singh 4 years, 4 months ago

What is math
  • 2 answers

Sia ? 4 years, 4 months ago

The expression is given to be : 2√3 + √3

We need to simplify this given expression and find the value of this expression.

The expression is : 2√3 + √3

Since, √3 is common factor in both the terms so taking √3 common we have,

⇒ √3 × (2 + 1)

Now using BODMAS rule we will simplify the bracket first

⇒ √3 × 3

⇒ 3√3

The approximate value of √3 correct to three places of decimal is 1.732

So, the value of the given expression is : 3 × 1.732 = 5.196

Sweety Yadav 4 years, 3 months ago

3root 3

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App