No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Aditi Verma 7 years, 5 months ago

235/1000

Vaishnav M 7 years, 5 months ago

a raise to m divided by a raise to n

Vaishnav M 7 years, 5 months ago

am
  • 1 answers

Aditya Dadhich 7 years, 5 months ago

Ruppees 12.84 approx
  • 2 answers

Kanishka Singh 7 years, 5 months ago

( a + b )^2 = a^2 + 2ab + b^2 ( 2 + 4 )^2 = 2^2 + 2 (2)(4) + 4^2 ( 2 + 4 )^2 = 4 + 16 + 16 = 36

Sakshi Gandapwad 7 years, 5 months ago

36
  • 1 answers

Shreya Ahuja 7 years, 5 months ago

2(x+y)
  • 0 answers
  • 1 answers

Yashvini Shekhawat 5 years, 8 months ago

But what is the equation
  • 0 answers
  • 2 answers

Aditi Verma 7 years, 5 months ago

Pi is the ratio of circumferrence of circle to its diameter. Value of pi is approx 22/7

Shabariy Natarajan 7 years, 5 months ago

22/7
  • 0 answers
  • 3 answers

Vaishnavi Thakare 7 years, 5 months ago

0

Abhishek Raj 7 years, 5 months ago

0

Yashika Narang 7 years, 5 months ago

0
  • 1 answers

Deadpool K.K 7 years, 5 months ago

0
  • 2 answers

Deadpool K.K 7 years, 5 months ago

T

Tashu Kataria 7 years, 5 months ago

T
  • 2 answers

Apoorva Jain 7 years, 5 months ago

Answer is wrong by mistake it came

Apoorva Jain 7 years, 5 months ago

Old snd
  • 2 answers

Deadpool K.K 7 years, 5 months ago

1+x45

Tony Stark Ir 7 years, 5 months ago

1+x45
  • 1 answers

Queen_ Of _My _Heart 7 years, 5 months ago

X=1,a=1,2x=2. 1,1,2 these All are coefficient of this binomial
  • 0 answers
  • 1 answers

Kalp Vora 7 years, 5 months ago

Number system, polynomials, lines and angles
  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Anushka Ghosh 7 years, 5 months ago

Let x be 5.347 (i) Let 1000 x be 5347.5347 (ii) (ii) - (i) 1000 x = 5347.5347 -. x = 5.347 ____________________ 999 x = 5347 x = 5347 / 999
  • 0 answers
  • 0 answers
  • 1 answers

Prabjeet Singh 7 years, 5 months ago

{tex}\text {Given:}{/tex} {tex}p(x)=kx^3+3x^2-3 \text { and } q(x) = 2x^3-5x+k{/tex}

{tex}\text {Now, when } p(x) \text { and } q(x) \text { are divided by } g(x), \text { leaves same remainder in both cases.}{/tex}

{tex}\text {And, } g(x) = x-4{/tex}

{tex}\text {Putting } x= 4, \text { in } p(x), \text { we get remainder for } p(x), {/tex}

{tex}p(4) = (k)(4)^3+3(4)2-3{/tex}

{tex}\Rightarrow p(4) = 64k + 48-3{/tex}

{tex}\Rightarrow p(4) = 64k + 45{/tex}

{tex}\text {Putting } x= 4, \text { in } q(x), \text { we get remainder for } q(x), {/tex}

{tex}q(4)=2(4)^3-5(4)+k{/tex}

{tex}\Rightarrow q(4) = 2(64) - 20 + k{/tex}

{tex}\Rightarrow q(4) = 128 -20 + k{/tex}

{tex}\Rightarrow q(4) = 108 + k{/tex}

{tex}\text {Since, remainders are equal, so }p(4) = q(4),{/tex}

{tex}\therefore 64k+45=108+k{/tex}

{tex}\Rightarrow 64k-k=108-45{/tex}

{tex}\Rightarrow 63k = 63{/tex}

{tex}\Rightarrow k= \cfrac {63}{63}{/tex}

{tex}\Rightarrow k = 1{/tex}

{tex}\text {Thus, the required value of } k \text { is 1.}{/tex}

  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App