No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Nandini 18 5 years, 1 month ago

Let 0.2353535...be x x=0.2353535... 100 * x =0.2353535...*100 100x =23.53535... 100x=23.3 + .2353535...(23.3+.23535..=23.53535) 100x=23.3 + x (0.23535..=x) 100x - x =23.3 99x = 23.3 x =23.3/99 x=23.3 * 10/99 * 10 x = 233/990

Yogita Ingle 5 years, 1 month ago

Given a number 0.2353535…….

We need to prove 0.2353535… = 0.235‾ can be expressed in the form of p/q, where p and q are integers and q ≠zero

Proof:

Let us assume that

x = 0.2353535…

x = 0.235 ——————(i)

On Multiplying both sides by 100 of equation (i) we get,

100x = 100 × 0.2353535…

100x = 23.53535————–(ii)

Subtracting equation (i) from equation (ii) we get,

100x – x =  23.53535 – 0.2353535…

99x = 23.2999965

x = 23.2999965/99

x = 233/990

x = 0.2353535

Hence, x = 0.2353535…= 0.235‾ can be expressed in the form of p/q as 233/ 990 and here q=990 (q≠zero)

Hence proved.

  • 2 answers

Nandini 18 5 years, 1 month ago

in triangle PQC and triangle PRC, Given - QC= PR PQ=CR To prove:- angle PCQ= angle CPR Proof:- In triangle PQC and triangle PRC:- QC=PR [GIVEN] PQ=CR [GIVEN] andPC=PC [COMMON] by SAS similarly criterion, triangle PQC is congruent to triangle PRC. therefore by C.P.C.T angle PCQ =angle CPR prooved.

Yogita Ingle 5 years, 1 month ago

In triangle PQC and triangle PRC,
Given - QC= PR
PQ=CR
To prove:- angle PCQ= angle CPR

Proof:- In triangle PQCand triangle PRC:-

QC=PR [GIVEN]
PQ=CR [GIVEN]
andPC=PC [COMMON]
by SAS similarly criterion, triangle PQC is congruent to triangle PRC.
therefore by C.P.C.T
angle PCQ =angle CPR

  • 2 answers

Is Topper Is Topper 5 years, 1 month ago

Gg

Yogita Ingle 5 years, 1 month ago

Non Euclidean Geometry:

All the attempts to prove Euclid’s fifth postulate using the first 4 postulates failed. But they led to the discovery of several other geometries, called non-Euclidean geometries. Now the geometry of the universe we live in has been shown to be a non-Euclidean geometry. In fact, it is called spherical geometry. In spherical geometry, lines are not straight. They are parts of great circles (i.e., circles obtained by the intersection of a sphere and planes passing through the centre of the sphere).    As per fist postulate of Euclid, lines AN & BN should not meet, but in the image below, these lines meet at point N. It has been proved that Euclidean geometry is valid only for the figures in the plane. On the curved surfaces, it fails.

  • 1 answers

Gaurav Kumar 5 years, 1 month ago

Step 1- measure a line segment of 5cm (let A and B ) Step 2- now draw an arc of 5cm from point A. Step 3- and draw an arc of 5 cm from point B. Step 4- let the point of intersection of two arcs be C. Step 5- join points A,B and C. To justify your answer: Measure all sides and angles. You will observe that each side is of 5cm and each angle is of 60⁰.
  • 1 answers

Yogita Ingle 5 years, 1 month ago

Given: In the isosceles ∆XYZ, XY = XZ.

To prove ∠XYZ = ∠XZY.

Construction: Draw a line XM such that it bisects ∠YXZ and meets the side YZ at M.

Proof:

          Statement

1. In ∆XYM and ∆XZM,

(i) XY = XZ

(ii) XM = XM

(iii) ∠YXM = ∠ZXM

 

2. ∆XYM ≅ ∆XZM

3. ∠XYZ = ∠XZY. (Proved)

          Reason

1.

(i) Given.

(ii) Common side.

(iii) XM bisects ∠YXZ.

 

2. By SAS criterion.

3. CPCTC.

  • 2 answers

Yogita Ingle 5 years, 1 month ago

In ΔABE and ΔACF, 

∠BAE=∠CAF  (Common angle) 

∠AEB=∠AFC ....(∵BE⊥AC and CF⊥AB) 

BE=CF (Given that altitudes are equal)

By AAS criterion of congruence, 

ΔABE≅ΔACF

Hence, 

AB=AC (by CPCT)

Harsh Grover 5 years, 1 month ago

Angle A common angle E and angle F=90 AC =AB
  • 1 answers

Yogita Ingle 5 years, 1 month ago

<i>Step of Construction:</i>
 

(i) After making 90° angle take L and N as centre and draw two arcs cutting each other at S.

(ii) Join SO.

Then, ∠SOA = 105°.

  • 1 answers

Yogita Ingle 5 years, 1 month ago

since , AB is a line segment,
L is drawn perpendicular to AB,
A point 'p' lies on line L.
( as shown in the diagram in the attachment )
To prove : P is equidistant from A and B.
Prove :- In ∆AOP and ∆BOP ,
OP = OP ( common side )
POA = POB
AO = OB
 ∆AOP  ∆BOP (By S.A.S.)
=> AP = BP ( By C.P.C.T. )
Hence , "P" is equidistant from A and B .

  • 2 answers

Yogita Ingle 5 years, 1 month ago

In △AOB and △DOC

∠BAO=∠CDO (alternate angles as AB∥CD and BC is the transversal)

∠AOB=∠DOC(vertically opposite angles)

OA=OD(given)

∴△AOB≅△DOC by ASA rule.

Meenkashi Singh 5 years, 1 month ago

Given: AB is parallel to another line segment CD.              O is the midpoint OF AD In ΔAOB and ΔDOC ∠AOB=∠COD         ...(Vertically opposite angle ) ∠BAO=∠CDO         ...(Given AB parallel to DC and AD meet  both lines so alternate angles are equal) AO=OD          ....(O is the midpoint of AD ) ΔAOB≅ΔDOC        ...ASA test So, BO=CO Then, O is the midpoint of BC.
  • 2 answers

Yogita Ingle 5 years, 1 month ago

In triangle PQC and triangle PRC,
Given - QC= PR
PQ=CR
To prove:- angle PCQ= angle CPR

Proof:- In triangle PQCand triangle PRC:-
QC=PR [GIVEN]
PQ=CR [GIVEN]
andPC=PC [COMMON]
by SAS similarly criterion, triangle PQC is congruent to triangle PRC.
therefore by C.P.C.T
angle PCQ =angle CPR

Meenkashi Singh 5 years, 1 month ago

PQ=PR     (Given) ∴∠PQR=PRQ  (Angles opposite to equal sides) QC=RC      (Given) △PQC≅△CPR By SAS criteria
  • 1 answers

Yogita Ingle 5 years, 1 month ago

 It is given that ∠BAD=∠EAC

∠BAD+∠DAC=∠EAC+∠DAC   [add ∠DAC on both sides]

∴∠BAC=∠DAE

In △BAC and △DAE

AB=AD (Given)

∠BAC=∠DAE (Proved above)

AC=AE (Given)

∴△BAC≅△DAE (By SAS congruence rule)

∴BC=DE (By CPCT)

  • 0 answers
  • 1 answers

Yogita Ingle 5 years, 1 month ago

Given that:- ABCD is a parallelogram and EFCD is a rectangle.

To prove:- ar(ABCD)=DC×AL

Proof:-

∴AB∥CD.....(1)[∵Opposite sides of parallelogram are equal]

As given that EFCD is a rectangle and we know that rectangle is also a parallelogram.

∴EF∥CD.....(2)

From eqn(1)&(2), we hahve

AB∥EF

Now, ABCD and EFCD are two parallelograms with same base CD and between tha same parallels EB and CD.

As we know that parallelogram with same base and in between same parallels are equal in area.

∴ar(ABCD)=ar(EFCD)

As from the fig.

ar(EFCD)=DC×FC

⇒ar(ABCD)=DC×FC.....(3)

AL⊥CD[Given]

∴AFCL is a also a rectangle.

∴AL=FC.....(4)

From eqn(3)&(4), we get

ar(ABCD)=DC×AL

Hence proved that ar(ABCD)=DC×AL.

  • 3 answers

Nisha Murali 5 years, 1 month ago

Thanks

Abhay Singh 5 years, 1 month ago

Question 1. 102x3=306 2. 140x96=13440 3. (x+4)(x+10) =x+x of 4+10 = 2x of 14 = 28x answer.

Yogita Ingle 5 years, 1 month ago

Let us rewrite (102)3 as (100+2)3

Now using the identity (a+b)3=a3+b3+3ab(a+b), we get

(100+2)3=1003+23+[(3×100×2)(100+2)]

=1000000+8+(600×102)

=1000000+8+61200

=1061208

Hence, (102)3=1061208

  • 2 answers

Yogita Ingle 5 years, 1 month ago

Given: In ΔPQR, 

∠R >∠Q

⇒ PQ > PR (side opposite to greater angle is greater)

Hence, B is correct. 

Ayush Thakur 5 years, 1 month ago

PR>PQ
  • 3 answers

Satyam Kumar 5 years, 1 month ago

(C). 37.5° and (D). 47.5° both can be constructed.

Yogita Ingle 5 years, 1 month ago

Which of the following can be construed using ruler and pair of compasses only (A). 35° (B). 40° (C). 37.5° (D). 47.5°

Ans c

Ayush Thakur 5 years, 1 month ago

(C). 37.5°
  • 2 answers

Yogita Ingle 5 years, 1 month ago

Given E and F are mid point of equal sides AB and AC of triangle ABC

In ΔABF and  ΔACE

AB=AC  (given )

∠A=∠A  (common angle )

AF=AE (halves of equal sides)

∴ΔABF≅ΔACE (SAS rule)

∴BF=CF (CPCT)

Ayush Thakur 5 years, 1 month ago

(B). BE=AF
  • 2 answers

Chandana M Patil 5 years, 1 month ago

We can first we should know the formule and the second we have to understand question and third is we should know that what is given and what we have to find

Piyush Patel 5 years, 1 month ago

Yes we can
  • 5 answers

Satyam Kumar 5 years, 1 month ago

2√3

Piyush Patel 5 years, 1 month ago

2√3

Shruti Saini 5 years, 1 month ago

144

Kripa Daga 5 years, 1 month ago

2√3 or 3.46

Surbhi Anand 5 years, 1 month ago

Approximately 3.46
  • 5 answers

Shivam Kumar 5 years, 1 month ago

2x+9=6 2x=6-9 2x=-3 X=-3/2

Zaid . 5 years, 1 month ago

-3/2

Satyam Kumar 5 years, 1 month ago

x = -3/2

Kripa Daga 5 years, 1 month ago

-3/2

Yogita Ingle 5 years, 1 month ago

2x + 9 = 6

2x = 6 - 9

2x = -3

x = -3/2

  • 1 answers

Ma Raikwar 5 years, 1 month ago

Where is the figure
  • 5 answers

Zaid . 5 years, 1 month ago

30

Hariom Singh 5 years, 1 month ago

Social science history chapter 1 Question and answer

Kripa Daga 5 years, 1 month ago

12√15

Yogita Ingle 5 years, 1 month ago

6√

Yogita Ingle 5 years, 1 month ago

√12x√15 = √15 x 12 = √180 = √ 36 x  5 = 6√

2ke
  • 1 answers

Kripa Daga 5 years, 1 month ago

5ke
  • 1 answers

Kripa Daga 5 years, 1 month ago

(◕ᴥ◕)/ᐠ。ꞈ。ᐟ\
  • 1 answers

Gaurav Seth 5 years, 1 month ago

 

We can do it by using Pythagoras Theorem.

We can write √10 = √(9 + 1)

=> √10 = √(32 + 1)                  

Construction

1. Take a line segment AO = 3 unit on the x-axis.   (consider 1 unit = 2cm)   

2. Draw a perpendicular on O and draw a line OC = 1 unit 

3. Now join AC with √10. 

4. Take A as center and AC as radius, draw an arc which cuts the x-axis at point E.

5. The line segment AC represents √10 units. 

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App