No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Praful Sahu 1 year, 4 months ago

Relation

Pankaj Singh 1 year, 10 months ago

Yes
  • 2 answers

Pankaj Singh 1 year, 10 months ago

Yes

Anuj Kumar Yadav 2 years, 3 months ago

कक्षा 11 हिन्दी
  • 0 answers
  • 1 answers

Pavan Reddy Yl 3 years, 3 months ago

Correct option is C 8.8 cm θ=(36×180π​)c=(5π​)c and r=14 cm. ∴  l=rθ=(14×5π​) cm = (14×722​×51​) cm = 544​ cm = 8.8 cm.
  • 2 answers

Ishant Thakur 3 years, 4 months ago

find the radius of circle in which a central angle of 60degree intecepts an arc of length 37.4cm

Vikash Sharma 3 years, 5 months ago

by seeing solition
  • 1 answers

Akash Sharma 3 years, 4 months ago

Relation and function
  • 0 answers
  • 1 answers

Vikash Sharma 3 years, 5 months ago

whats the question
  • 1 answers

Yogita Ingle 4 years ago

Let the equation of circle be 

x2+y2+2gx+2fy+c=0        .....(1)
where (−g,−f) is center and g2+f2−c is the radius.
Since, the circle passes through (2,3), so it satisfies eqn (1)
⇒4+9+4g+6f+c=0
⇒4g+6f+c=−13      .....(2)
Since, the circle passes through (−1,1), so it satisfies eqn (1)
⇒1+1−2g+2f+c=0
⇒−2g+2f+c=−2      .....(3)
Subtracting eqn (3) from eqn (2), we get
6g+4f=−11       ....(4)
Given center lies on the line x−3y−11=0
Since, center (−g,−f) satisfies this equation.
⇒−g+3f=11        ....(5)
Solving eqn (4) and (5), we get
g= −7​/2 ,f= 5​/2
Put this value in (2), we get
c=−14
Substituting these values in (1),
x2+y2−7x+5y−14=0
which is the equation of required circle.

  • 1 answers

Pankaj Singh 1 year, 10 months ago

Yes
  • 0 answers
  • 0 answers
  • 1 answers

Yogita Ingle 4 years, 2 months ago

A diagram used to represent all possible relations of different sets. A Venn diagram can be represented by any closed figure, whether it be a Circle or a Polygon (square, hexagon, etc.). But usually, we use circles to represent each set. 

In the above figure, we can see a Venn diagram, represented by a rectangular universal set, which has two independent sets X and Y. Therefore, X and Y are disjoint sets. The two sets X and Y are represented in the circular shape. This diagram shows that set X and set Y have no relation between each other, but they are a part of universal set.

  • 4 answers

Manish Sakpal 3 years, 10 months ago

Iupac

Azizul Hoque 4 years, 2 months ago

Help

Azizul Hoque 4 years, 2 months ago

Hii

Azizul Hoque 4 years, 2 months ago

Ans
  • 2 answers

Aditya Patil 4 years, 2 months ago

Ex. X=-5 -2*-5=10 10>5

Aditya Patil 4 years, 2 months ago

Substitute no.s instead of X and calculate till the equation matches
  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Rajesh Kumar 4 years, 4 months ago

12
  • 1 answers

Yogita Ingle 4 years, 11 months ago

The base equation for a circle centered at (h,k) with radius r is:

   (x - h)2+ (y - k)2 = r2

If the points are concyclic, they all lie on the graph for the same circle.

Thus, all points are solutions to a single equation of the circle

WE can plug each point into the base equation, and obtain a system of equationd

FOR POINT (-2,10)

     Equation 1:  (-2 - h)2 + (10 - k)2 = r2

FOR POINT (1,11)

     Equation 2:  (1 - h)2+ (11 - k)2 = r2

FOR POINT (6,10)

     Equation 3:  (6 - h)2 + (10 - k)2 = r2

FOR POINT (9,7)

     Equation 4:  (9 - h)2 + (7 - k)2 = r2


From Equation 1 and 2 above, since they have 2 different expressions equivalent to r2, we can construct an equation involving variables x and h.

     r2 = r2   

     (-2 - h)2 + (10 - k)2 = (1 - h)2 + (11 - k)2

     (-2 - h)(-2 - h) + (10 - k)(10 - k) = (1 - h)(1 - h) + (11 - k)(11 - k)

     (4 + 2h + 2h + h2) + (100 -10k - 10k + k2) = (1 - h - h + h2) + (121 - 11k - 11k + k2)

      h2 + 4h + 4 + k2 - 20k + 100 = h2-2h + 1 + k2 -22k + 121

    We can subtract h and k from both sides.

      4h + 4 - 20k + 100 = -2h + 1 -22k + 122

      4h -20k + 104 = -2h - 22k + 122

    Move all h and k variables to the left ... move all constants to the right

      6H + 2K = 18

SYSTEM EQUATION 1:   6h + 2k = 18      

From equation 3 and 4 above, we go through the same process to obtain a second system equation.

       r2 = r2

       (6 - h)2 + (10 - k)2 = (9 - h)2 + (7 - k)2

       (6 - h)(6 - h) + (10 - k)(10 - k) = (9 - h)(9 - h) + (7 - k)(7 - k)

       36 - 6h - 6h + h2+ 100 - 10k - 10k + k2 = 81 - 9h - 9h + h2 + 49 = 7k - 7k + k2

       h2 - 12h + 36 + k2 - 20k + 100 = h2 - 18h + 81 + k2- 14k + 49

    Simplify, and subtract h2 and k2from both sides

       -12h - 20k + 136 = -18h - 14k + 130

      Move the h and k variables to the left, and the constants to the right

        -12h + 18h - 20k + 14k = 130 - 136

        6h - 6k = -6

SYSTEM EQUATION 1:  6h - 6k = -6

      6h +2k = 18

      6h - 6k = -6

Multiply the second equation by -1, we have ... -6h + 6k = 6

Adding the 2 equations, we have

 6h + 2k = 18

  -6h + 6k =  6

          8k =24

             k = 3

Using substitution of k=3 into equation 6h + 2k = 18,
   
6h + 2(3) = 18

    6h + 6 = 18

    6h = 12

    h = 2

Now, use one of the points on the circle ... (1, 11) and (h,k) ... (2,3), to find the radius

   (1 - 2)2 + (11 - 3)2 = r2

   1 + 64 = r2

   65 = r2

   r = √65
Thus the equation of our circle is:
   (x - 2)2 + (y - 3)2 = (√65)2

 

  • 0 answers
111
  • 0 answers
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App