Three girls Reshma, Salma and Mandip …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6m each, what is the distance between Reshma and Mandip?
Please give answer with Given, To Prove and Construction
Posted by Lakshya Sethi 9 months, 2 weeks ago
- 1 answers
Related Questions
Posted by Preeti 𝙿𝚛𝚎𝚎𝚝𝚒 𝚔𝚞𝚖𝚊𝚛𝚒 2 days, 6 hours ago
- 2 answers
Posted by Prince Yadav 1 day, 15 hours ago
- 0 answers
Posted by Aditi Singh 1 day, 19 hours ago
- 0 answers
Posted by Ganesh Das 2 days ago
- 1 answers
Posted by Anurag Singh 23 hours ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Preeti Dabral 9 months, 2 weeks ago
In {tex}\Delta \mathrm { NOR }{/tex} and {tex}\Delta \mathrm { NOM }{/tex}
ON = ON |Common
{tex}\angle \mathrm { NOR } = \angle \mathrm { NOM }{/tex} {tex}| \because{/tex} Equal chords of a circle subtend equal
angle at the centre
OR = OM |Radii of a circle
{tex}\therefore \triangle \mathrm { NOR } \cong \Delta \mathrm { NOM }{/tex} [SAS Rule]
{tex}\therefore \angle O N R = \angle O N M{/tex} [c.p.c.t]
and NR = NM [c.p.c.t.]
But {tex}\angle O N R + \angle O N M = 180 ^ { \circ }{/tex} |Linear Pair Axiom
{tex}\therefore \angle O \mathrm { NR } = \angle \mathrm { O } \mathrm { NM } = 90 ^ { \circ }{/tex}
{tex}\triangle{/tex} ON is the perpendicular bisector of RM,
Draw bisector SN of {tex}\angle \mathrm { R } \mathrm { SM }{/tex} to intersect the chord RM in N.
In {tex}\Delta \mathrm { RSN }{/tex} and {tex}\Delta \mathrm { MSN }{/tex}
RS = MS (= 6 cm each)
SN = SN [Common]
{tex}\angle R S N = \angle M S N{/tex} [By construction]
{tex}\therefore \Delta R S N \cong \Delta \mathrm { NSN }{/tex} [SAS Rule]
{tex}\therefore \angle R N S = \angle M N S{/tex} [c.p.c.t]
and RN = MN [c.p.c.t]
But {tex}\angle \mathrm { RNS } + \angle \mathrm { MNS } = 180 ^ { \circ }{/tex} |Linear Pair Axion
{tex}\therefore \angle R N S = \angle M N S = 90 ^ { \circ }{/tex}
{tex}\therefore \mathrm { SN }{/tex} is the perpendicular bisector of RM and therefore passes through O when produced.
Let ON = x m
Then SN = (5 - x) m
In right triangle ONR,
x2 + RN2 = 52, ------ (1) |By Pythagoras theorem
In right triangle SNR,
(5-x)2 + RN2 = 62 ---- (2) |By Pythagoras theorem
From (1),
RN2 = 52 - x2
From (2),
RN2 = 62 - (5 - x)2
Equating the two values of RN2, we get
52 - x2 = 62 - (5 -x)2
{tex}\Rightarrow 25 - x ^ { 2 } = 36 - ( 25 - 10 x + x ) ^ { 2 }{/tex} {tex}\Rightarrow 25 - x ^ { 2 } = 36 - 25 + 10 x - x ^ { 2 }{/tex}
{tex}\Rightarrow 25 - x ^ { 2 } = 11 + 10 x - x ^ { 2 }{/tex}{tex}\Rightarrow 25 - 11 = 10 x{/tex}
{tex}\Rightarrow{/tex} 14 = 10 x {tex}\Rightarrow{/tex}10x = 14
{tex}\Rightarrow x = \frac { 14 } { 10 } = 1.4{/tex}
Putting x = 1.4 in (1), we get
(1.4)2 + RN2 = 52
{tex}\Rightarrow R N ^ { 2 } = 5 ^ { 2 } - ( 1.4 ) ^ { 2 }{/tex} {tex}\Rightarrow \mathrm { RN } ^ { 2 } = 25 - 1.96{/tex}
{tex}\Rightarrow \mathrm { RN } ^ { 2 } = 23.04 \Rightarrow \mathrm { RN } = \sqrt { 23.04 }{/tex}
{tex}\Rightarrow{/tex} RN = 4.8
{tex}\therefore{/tex} RM = 2 RN = {tex}2 \times 4.8 \mathrm { m } = 9.6 \mathrm { m }{/tex}
Hence, the distance between Reshma and Mandip is 9.6 m.
0Thank You