No products in the cart.

Prove that segment joining the mid …

CBSE, JEE, NEET, NDA

CBSE, JEE, NEET, NDA

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Prove that segment joining the mid point of non parellel side of trapezium is parellel to the parellel side and it's length is equal to half of the sum of lengths of parellel sides
  • 1 answers

K C 1 month, 3 weeks ago

Let E and F are midpoints of the diagonals AC and BD of trapezium  ABCD respectively. Draw DE and produce it to meet AB at G Consider △AEG and △CED ⇒  ∠AEG=∠CED                 [ Vertically opposite angles ] ⇒  AE=EC                 [ E is midpoint of AC ] ⇒  ∠ECD=∠EAG          [ Alternate angles ] ⇒  △AEG≅△CED     [ By SAA congruence rule ] ⇒  DE=EG     ---- ( 1 )  [ CPCT ] ⇒  AG=CD    ----- ( 2 )   In △DGB E is the midpoint of DG           [ From ( 1 ) ] F is midpoint of BD ∴  EF∥GB ⇒  EF∥AB       [ Since GB is part of AB ] ⇒  EF is parallel to AB and CD. Also, EF=21​GB ⇒  EF=21​(AB−AG) ⇒  EF=21​(AB−CD)           [ From ( 2 ) ]
http://mycbseguide.com/examin8/

Related Questions

Kya bol rhe the vo
  • 4 answers
Tum meri best friend ho na !
  • 1 answers
^2-9x+16=0
  • 0 answers
Jao
  • 5 answers
Factorise 14y³-347z³
  • 0 answers
Kidding okk
  • 5 answers
Bs pighla rhi ho 😉💞💯
  • 5 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Question Paper Creator

  • Create papers in minutes
  • Print with your name & Logo
  • Download as PDF
  • 5 Lakhs+ Questions
  • Solutions Included
  • Based on CBSE Syllabus
  • Best fit for Schools & Tutors

Test Generator

Test Generator

Create papers at ₹10/- per paper

Download myCBSEguide App