Related Questions:

Posted by Yuvraj Sangha 2Â years, 1Â month ago

- 1 answers

Posted by Sushil Kumar 1Â year, 6Â months ago

- 2 answers

Posted by Avani Neil 2Â years ago

- 1 answers

Posted by Arpit Jaat 2Â years, 1Â month ago

- 2 answers

Posted by Vineet Yadav 2Â years, 1Â month ago

- 2 answers

Posted by Kunjan Phukan 1Â year, 2Â months ago

- 0 answers

Subscribe complete study pack and get unlimited access to selected subjects. Effective cost is only ₹ 12.5/- per subject per month. Based on the latest CBSE & NCERT syllabus.

Create papers in minutes

Print with your name & Logo

Download as PDF

3 Lakhs+ Questions

Solutions Included

Based on CBSE Blueprint

Best fit for Schools & Tutors

- Work from home with us
- Create questions or review them from home

No software required, no contract to sign. Simply apply as teacher, take eligibility test and start working with us. Required desktop or laptop with internet connection

Sia đź¤– 8Â months ago

Let the first term and the common difference of the AP be a and d respectively.

According to the question,

Third term + seventh term = 6

{tex} \Rightarrow {/tex} [a + (3 - 1)d] + [a + (7 - 1)d] = 6 = a + (n - 1)d

{tex} \Rightarrow {/tex} (a + 2d) + (a + 6d) = 6 {tex} \Rightarrow {/tex} 2a + 8d = 6

{tex} \Rightarrow {/tex} a + 4d = 3 ..... (1)

Dividing throughout by 2 &

(third term) (seventh term) = 8

{tex} \Rightarrow {/tex} (a + 2d) (a + 6d) = 8

{tex} \Rightarrow {/tex} (a + 4d - 2d) (a + 4d + 2d) = 8

{tex} \Rightarrow {/tex} (3 - 2d) (3 + 2d) = 8

{tex} \Rightarrow {/tex} 9 - 4d

^{2}= 8{tex} \Rightarrow 4{d^2} = 1 \Rightarrow {d^2} = \frac{1}{4} \Rightarrow d + \pm \frac{1}{2}{/tex}

Case I, when {tex}d = \frac{1}{2}{/tex}

Then from (1), {tex}a + 4\left( {\frac{1}{2}} \right) = 3{/tex}

{tex} \Rightarrow {/tex} a + 2 = 3 {tex} \Rightarrow {/tex} a = 3 - 2 {tex} \Rightarrow {/tex} a = 1

{tex}\therefore {/tex} Sum of first sixteen terms of the AP = S

_{16}{tex} = \frac{{16}}{2}[2a + (16 - 1)d]{/tex} {tex}\because {S_n} = \frac{n}{2}[2a + (n - 1)d]{/tex}

= 8[2a + 15d]

{tex} = 8[2(1) + 15(\frac{1}{2})]{/tex}

{tex} = 8[12 + \frac{{15}}{2}]{/tex}

{tex} = 8[\frac{{19}}{2}]{/tex}

{tex} = 4 \times 19 = 76{/tex}

Case II. When {tex}d = - \frac{1}{2}{/tex}

Then from (1),

{tex}a + 4\left( { - \frac{1}{2}} \right) = 3{/tex}

{tex} \Rightarrow {/tex} a - 2 = 3 {tex} \Rightarrow {/tex} a = 3 + 2 {tex} \Rightarrow {/tex} a = 5

{tex}\therefore {/tex} Sum of first sixteen terms of the AP = S

_{16}{tex} = \frac{{16}}{2}[2a + (16 - 1)d]{/tex} {tex}\because {S_n} = \frac{n}{2}[2a + (n - 1)d]{/tex}

{tex} = 8[2a + 15d] = 8\left[ {2(5) + 15\left( { - \frac{1}{2}} \right)} \right] = 8\left[ {10 - \frac{{15}}{2}} \right] = 8\left[ {\frac{5}{2}} \right] = 20{/tex}

0Thank You